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Abstract

We analyze data leakage in visual datasets. Data leakage
refers to images in evaluation benchmarks that have been
seen during training, compromising fair model evaluation.
Given that large-scale datasets are often sourced from the
internet, where many computer vision benchmarks are pub-
licly available, our efforts are focused into identifying and
studying this phenomenon. We characterize visual leak-
age into different types according to its modality, coverage,
and degree. By applying image retrieval techniques, we
unequivocally show that all the analyzed datasets present
some form of leakage, and that all types of leakage, from
severe instances to more subtle cases, compromise the reli-
ability of model evaluation in downstream tasks.

1. Introduction

Visual datasets are at the core of advancements in computer
vision, serving not only as the foremost resources for model
training but also as benchmarks for evaluating technological
progress. Datasets have been central to the key milestones
in the field, such as ImageNet [16] for image recognition,
COCO [32] for object detection, and LAION [46] for image
generation. Despite their impact, best practices for the cre-
ation and use of visual datasets have received little attention.
As the demand for larger datasets keeps growing, analyzing
their content has become a major challenge. In this context,
audits have been crucial for revealing critical issues such as
bias [21, 36], toxicity [6–8], or duplication [53], highlight-
ing the urgent need for thorough dataset analysis.

In this paper, we explore an often-overlooked issue in
large visual datasets: data leakage. Data leakage occurs
when a model has access to some or all of the evaluation
test data during training. This may result in inflated per-
formance metrics and compromise the integrity of model
evaluation — one of the fundamental principles in machine
learning. In the era of datasets scraped from the internet
[20, 46, 47], where most benchmarks for model evaluation

*Equal contribution.

are also publicly available online, the problem of data leak-
age stands out as particularly relevant. A potential conse-
quence is that as large vision and language models (VLMs)
[14, 31, 40] are trained on huge pre-training datasets from
the web, any existing leakage can result in overly opti-
mistic evaluations, making comparisons to models trained
on datasets without leakage unfair.

Data leakage is an active research topic in the context
of large language models (LLMs) [1, 3, 25, 53], as LLMs
are trained on vast amounts of text from the internet, often
including partial or complete portions of evaluation bench-
marks [41]. While the natural language processing (NLP)
community is actively working to detect and address data
leakage [4, 15, 17, 19, 23, 34, 38, 39, 43, 45, 49],1 there
has been comparatively little focus on identifying overlaps
of images in visual datasets. To close this gap, we analyze
a variety of standard visual datasets and explore whether
there are overlaps in test and training images. We do so
by categorizing datasets into three types according to their
standard use: PRETRAINING , i.e. datasets used for train-
ing large models, TRAINING , i.e. datasets for fine-tunning
or training smaller models, and BENCHMARK , i.e. datasets
for reporting models’ performance.

We define data leakage across three dimensions: modal-
ity, coverage, and degree. Modality refers to the type of
data being leaked, such as images with or without anno-
tations. Coverage describes the relationship between the
training and the evaluation splits, such as from the same or
different dataset. Finally, degree specifies the level of simi-
larity required for two images to be considered leaked, such
as identical or near-identical. Each scenario of data leakage
is described by a unique combination of these three dimen-
sions. In all cases, data leakage is detected through image
retrieval by extracting image representations and conduct-
ing an efficient k-nearest neighbor (knn) search.

Our method and leakage definitions are validated by ex-
perimental results in Sec. 6 and extensive qualitative ex-
amples are provided in the supplementary material. Fol-

1There was a dedicated workshop on the topic at ACL 2024: the 1st
Workshop on Data Contamination, https://www.aclweb.org/
portal/content/first-workshop-data-contamination.

This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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lowing our approach, we conduct a comprehensive leakage
analysis in Sec. 7, covering 20 data splits across 7 popular
visual datasets. We study both intra-dataset leakage, i.e.,
image overlap between the test and training splits of the
same dataset, and inter-dataset leakage, i.e., image overlap
between two different datasets. Additionally, we demon-
strate the impact that leaked samples have on the evaluation
of three downstream tasks: zero-shot image classification,
supervised image classification, and image-to-text retrieval.
Our main findings are:
• For all the datasets under analysis, data leakage is present

within splits of the same dataset, i.e. training and tests
splits of the same dataset have shared images.

• For all BENCHMARK under analysis, we identify in-
stances of data leakage in the PRETRAINING datasets.

• Hard leakage rates (i.e. identical images) tend to be be-
low 3%, whereas soft leakage (i.e. near-identical images)
reaches rates of 7%. In total, we find up to 10% leakage.

• Both hard and soft leakage have a pronounced effect on
the evaluation of downstream tasks. While this generally
results in inflated performance metrics, we also observe
instances of decreased performance when labels differ be-
tween training and testing.
Our results consistently show that models are capable of

memorizing not only identical leaked samples but also near-
identical ones. This poses a great risk to fair model evalua-
tion, especially in the context of zero-shot tasks where mod-
els have been trained on different datasets with potentially
different leakage rates.

2. Related work

Data leakage in visual datasets is often referred to as image
duplication.2 Several models that rely on vast amounts of
internet-sourced images for training have adopted different
techniques to detect leakage between their training and test
sets [14, 35, 40, 59]. For instance, using RMAC features
[52], Mahajan et al. [35] reported less than 1% overlap be-
tween their dataset collected from Instagram3 and four stan-
dard validation sets: ImageNet [16], CUB [55], Places [60],
and COCO [32]. On the other hand, in CLIP [40], Radford
et al. trained a custom duplication detector and found sub-
stantial overlap with rates reaching up to 21.5% in all but
synthetic datasets (MNIST [30], CLEVR [26]) and those
created post-training cutoff (ObjectNet [5], Hateful Memes
[28]). Alternatively, in OpenCLIP [14], pHash [58] was
used to estimate the leakage between LAION-400M [46]
and the downstream datasets, ranging from 1% to 5%.

2Duplication can refer to the presence of identical images within the
same dataset split, such as multiple copies of the same image in the training
set. This scenario typically does not pose a significant problem. Therefore,
we use the term leakage to specifically describe instances where duplicates
occur between a training and a test set.

3https://www.instagram.com/

Leakage in visual datasets has been primarily conducted
by the authors of models themselves, often concluding that
there is a minimal impact on the evaluations. However, as
large datasets and models are later applied to a wide range
of tasks beyond their original scope, we believe an indepen-
dent and systematic assessment is essential.

3. Data leakage definition
Data leakage compromises the integrity of a benchmark by
using information from the evaluation split during the train-
ing process of a model. This can occur in different forms.
To systematically characterize the issue, we break it down
into three dimensions: modality, coverage, and degree.
Leakage modality is the dimension that defines the type
of data being leaked. In visual datasets, we distinguish be-
tween two modalities:
• Image-only leakage: only the images from the evalua-

tion set are exposed during training, while their corre-
sponding annotations or labels remain unseen.

• Full leakage: both the images and their associated anno-
tations or labels are exposed during training.

Leakage coverage is the dimension that defines the re-
lationship between the training and evaluation splits of the
leaked samples. We consider two scenarios:
• Intra-dataset leakage: occurs when there is an overlap

between training and evaluation samples within the same
dataset. This type of leakage compromises the integrity
of the evaluation protocol for that specific dataset.

• Inter-dataset leakage: occurs when samples from an
evaluation dataset are leaked into a different dataset used
in the training process of a model. This type of leak-
age can affect the generalizability of the model across
datasets, and it can be particularly problematic when
benchmarking models trained on different datasets.

Leakage degree is the dimension that defines the level
of similarity required between two images for them to be
considered leaked. We distinguish between two cases:
• Hard leakage: occurs when identical images appear in

both the training and evaluation sets. This represents a
direct and unambiguous form of leakage, where the over-
lap between datasets is explicit and easily detectable.

• Soft leakage: occurs when nearly identical images are
present in both the training and evaluation sets. Unlike
hard leakage, soft leakage involves images with minor
variations. Although soft leakage has been often over-
looked, we show in Sec. 7.3 that it can greatly impact the
evaluation of model generalization.
Each leakage scenario is defined by a unique combina-

tion of attributes across the three dimensions. For exam-
ple, an image-only, intra-dataset, and hard leakage scenario
describes a situation where the leakage occurs exclusively
through exact images within the same dataset.
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4. Data leakage detection
To detect data leakage in visual datasets, we need to identify
whether images from a test split have been leaked into a
train split. We formulate the problem as an image retrieval
task (Sec. 4.1) and categorize leakage degree into hard and
soft by thresholding (Sec. 4.2).

4.1. Image retrieval
Given two datasets, one commonly used for training
T = {xo} and the other for evaluation E = {xq}, where
xo and xq are images, the goal is to find how many images
from E can be found in T . Using image retrieval terminol-
ogy, we treat images in E as queries and search for them
within T , referred to as the collection.

Each image x, whether in the query or in the collec-
tion, is represented by features obtained from an image en-
coder e(·), yielding the encoded representations c = e(xo)
and q = e(xq). These image representations must con-
tain enough information for detecting leaked images while
being computationally efficient to handle large-scale data
and robust enough to account for small transformations be-
tween datasets, such as resizing and cropping. Given the
size of web-scale datasets, directly extracting representa-
tions for every image is computationally expensive. When
available, we use pre-computed image representations pro-
vided by dataset authors, typically pre-trained CLIP [40].

Depending on the size of the collection |T |, image re-
trieval is conducted as:
• direct search: if |T | is sufficiently small, we match

each query representation q with each representation in
the collection c to obtain a similarity score per pair
sq,c = cos(q, c), where cos is cosine similarity;

• knn search: for larger datasets, we conduct a knn search
with Faiss [18] by building an index I with the represen-
tations in T and use it for fast search given q. The search
is conducted based on similarities sq,c = faisssim(q, c, I),
where faisssim returns the cosine similarity between q and
the indexed representation of c in I .

4.2. Leakage degree
The leakage degree is the dimension that defines how sim-
ilar two images need to be to classify them as leakage. We
use the similarity score sq,c obtained through direct or knn
search to identify whether a pair of images are identifcal
(hard leakage) or near-identical (soft leakage).

For a given pair of images, they are considered hard leak-
age when the similarity score is above a threshold

sq,c ≥ τh, (1)

whereas if the similarity score falls within

τs ≤ sq,c < τh (2)

Table 1. Datasets details by type.

dataset split images source type

coco test2014 40k flickr BENCHMARK

coco test2015 81k flickr BENCHMARK

coco test2017 40k flickr BENCHMARK

flickr30k all 31k flickr BENCHMARK

gcc val 13k flume BENCHMARK

imagenet test 100k flickr BENCHMARK

imagenet val 50k flickr BENCHMARK

openimages test 125k flickr BENCHMARK

openimages val 41k flickr BENCHMARK

textcaps test 3k openimages BENCHMARK

coco val2014 40k flickr BENCHMARK TRAINING

coco val2017 5k flickr BENCHMARK TRAINING

coco train2014 82k flickr TRAINING

coco train2017 118k flickr TRAINING

coco unlabeled 123k flickr TRAINING

textcaps train 25k openimages TRAINING

gcc train 2, 874k flume TRAINING PRETRAINING

imagenet train 1, 281k internet TRAINING PRETRAINING

openimages train 1, 743k flickr TRAINING PRETRAINING

laion all 407, 314k commoncrawl PRETRAINING

the pair is considered soft leakage. The hard and soft leak-
age rates, H and S respectively, are computed as

H =
Nh

|E|
, S =

Ns

|E|
, (3)

where Nh and Ns are the number of hard and soft leakage
samples found, respectively. The thresholds τs and τh are
found empirically and validated in Sec. 6.2.

5. Experimental settings
Setup Our default image encoder, e(·), is a pretrained
CLIP ViT-B/32 [40]. In the knn search, we use the
AutoFaiss4 implementation for Faiss.

Datasets We categorize datasets into three types.
PRETRAINING are large datasets sourced from the In-

ternet and used to train large models. TRAINING are
standard sets, typically annotated, used for model training
or finetuning. BENCHMARK are smaller, annotated
datasets used for evaluation. As summarized in Tab. 1, our
analysis comprises 20 data splits across 7 datasets:
COCO [32] contains several splits (train, val, test, unla-

beled) across different versions (2014, 2015, 2017).
The images were collected from Flickr5, and each
image includes object annotations and five captions.
COCO is the standard dataset for object detection
[42, 56] and image captioning [54]. The dataset is used
in different ways in the literature. While some papers
[2, 22, 33] report results on the test splits, which re-
quire evaluation via a server, others [9] use the valida-
tion split, and some [42] report results on both. Addi-
tionally, it is common to augment the training data with

4https://github.com/criteo/autofaiss
5https://www.flickr.com/
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the validation set to improve performance [27]. We use
the test and val splits as BENCHMARK , with the val
also serving as TRAINING , along with the train and
unlabeled splits.

Flickr30k [57] has a single split with 31, 783 images col-
lected from Flickr, where each image is annotated with
a caption. Train, val, and test splits were later intro-
duced in [27]. We use it as BENCHMARK .

GCC [48] contains about 3.3 million images from the in-
ternet collected through the crawler Flume [11]. Im-
ages are divided into train and val splits, and each im-
age is paired with an alt-text caption. Due to broken
links, we could only download 2, 874, 229 train and
13, 354 val images. The val split is used to report re-
sults [12], making it a BENCHMARK . Meanwhile, the
training split has been used for training VLMs [13, 51],
so we use it as PRETRAINING .

ImageNet [16] has more than a million images divided
into train, val, and test splits. Images are collected
from the internet6 and annotated with class labels.
Given its widespread use for training visual models
that serve as backbones for downstream tasks [10, 24],
we use its training split as PRETRAINING . The test
and val splits are used as BENCHMARK .

LAION [46] contains about 400 million images crawled
with Common Crawl7 from the internet. Each im-
age is paired with an alt-text caption. LAION is de-
signed for training large VLMs [14, 44], and does
not provide data splits. We use the entire dataset as
PRETRAINING .

OpenImages [29] has several versions. We use OpenIm-
ages v4, which contains about 2 million images from
Flickr split into train, val, and test. The dataset is com-
monly used for image classification and object detec-
tion. We use the val and test splits as BENCHMARK

and the training split as PRETRAINING .
TextCaps [50] is a subset of OpenImages with hu-

man annotated captions. Data is split into 3, 353
test and 25, 119 training images, which we use as
BENCHMARK and TRAINING , respectively.

6. Method evaluation
We validate the proposed method by showing the efficacy
of the image retrieval (Sec. 6.1) and inspecting the choice
of thresholds in the leakage degree (Sec. 6.2).

6.1. Image retrieval evaluation
To be able to detect small variations in images such as
cropping or scaling, we evaluate the data leakage detec-

6While the val and test images are from Flickr, the source of the train
images is not specified.

7https://commoncrawl.org/

tion method with a particular focus on the cases where im-
ages undergo non-semantic transformations. We conduct
this evaluation on Flickr30k. We use the full dataset, i.e.,
31, 783 images, as the collection, and we randomly choose
5, 000 images as queries. Given a query image (with or
without a non-semantic transformation), the goal is to re-
trieve the original image from the collection.

The evaluation flow is as follows: for images in the col-
lection, we just extract their encoded representations and
store them. For query images, we apply a non-semantic
transformation before feeding them to the image encoder.
Then, the encoded representation of a transformed query
is matched against all the representations in the collection
with direct search, and the collection image with the high-
est cosine similarity is retrieved. Accuracy is measured as
recall at 1 (R@1), i.e., the number of retrieved images corre-
sponding to their original query over the number of queries.

Image encoders We evaluate three types of image en-
coders: resnet, dino2, and clip. Image representations from
resnet are extracted from the second-to-last layer of a 152-
layer ResNet [24] pre-trained on ImageNet. The dino2 en-
coder is a DINOv2 ViT-B/14 [37], while clip is the pre-
trained CLIP ViT-B/32 [40] image encoder.

Image transformations We use four types of non-
semantic transformations:
• Geometric: vertical (flip-v) and horizontal (flip-h) flips,

and D degrees rotations with D = {45, 135, 225, 315},
namely rot-45, rot-135, rot-225, and rot-315.

• Cropping: removes B pixels from all four sides of the
image, with B = {20, 50, 100}, namely crop-20, crop-
50, and crop-100.

• Pixelization: Gaussian filters (gauss), Gaussian noise
(noise), and downsizing the image to S pixels, with S =
{128, 256} as rs-128, rs-256.

• Color: grayscale (gray), color inversion (invert), and red,
green, and blue colorizations (red, green, blue).
Examples of the transformations can be found in the sup-

plementary material.

Results Results are shown in Fig. 1, where each trans-
formation is plotted along the circular axis, with the lines
representing R@1 for the different image encoders. When
query images are not transformed (original), the three en-
coders achieve a 100% performance. For transformed im-
ages, the clip encoder performs well in cropping, horizontal
flipping, noise, and resizing, and it outperforms resnet in
colorization and pixelation. The most robust encoder for
colorization is dino2, probably due to its self-supervised
training process. However, dino2 underforms at geomet-
ric and cropping transformations, which are the most com-
mon type of transformation observed when images are du-
plicated across datasets. Given this and considering that
the largest dataset in our analysis (i.e., LAION) provides
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Figure 1. Leakage detection R@1 on 5, 000 query images from
the Flickr30k dataset under several transformations.

pre-computed clip embeddings, clip stands out as our pre-
ferred choice, offering the best balance between robustness
to transformations and computational efficiency.

6.2. Threshold choice
Next, we examine the definition of hard and soft leakage
together with the choice of thresholds. Using the same ex-
perimental set-up as in Sec. 6.1, we compute the true pos-
itive rate (TPR) and false positive rate (FPR) for different
thresholds under two conditions: when query images are not
transformed (original) and when query images are trans-
formed as in Sec. 6.1 (trans). The receiver operating char-
acteristic (ROC) curves are plotted in Fig. 2. For the orig-
inal case, the area under the curve (AUC) is near perfect,8

while when query images suffer from some non-semantic
transformation, the AUC is still remarkably high (0.98).

With respect to the leakage degree, we inspect the choice
of hard and soft thresholds in detail:
• Hard leakage is defined as the leakage of identical im-

ages. We choose τh = 0.98 as hard leakage threshold,
which achieves a FPR of 0.0, and a TPR of 1.00 (origi-
nal) and 0.08 (trans). This aligns precisely with the strict
definition of hard leakage for identical images: no false
positives occur, and true positives are detected only when
the image is either identical (original) or undergoes nearly
imperceptible transformations.

• Soft leakage is defined as the leakage of near-identical
images. We choose τs = 0.95 as soft leakage threshold,
which results in a higher TPR of 1.00 (original) and 0.16
(trans), while the FPR remains extremely low at a maxiu-
mum of 2.08 × 10−7. Again, this is the expected behav-
ior for soft leakage detection, where images that undergo
some transformations and hence, are not exactly identi-
cal, can be detected while maintaining a very low false

8Computed AUC value of 0.99999999370713.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
PR

original (AUC = 1.00)
trans (AUC = 0.98)

Figure 2. ROC curve across different thresholds on the Flickr30k
dataset. For images without transformations (original), the re-
trieval achieves near-perfect performance with an AUC of almost
1.00, and even when images undergo transformations (trans), the
performance remains high, with an AUC of 0.98.

positive rate.
Our choice of thresholds prioritizes a low FPR over a

high TPR to ensure that any detected image is truly a leaked
image. As a result, our analysis and findings are conser-
vative: there may be additional leaked images that are not
detected. A qualitative analysis of the threshold selection is
provided in the supplementary material.

7. Leakage analysis
Focusing on the image-only modality, we corroborate
the existence of intra-dataset (Sec. 7.1) and inter-dataset
(Sec. 7.2) leakage on several widely-used benchmarks. Af-
ter that, we present a comprehensive analysis on the impact
of leakage on the evaluation of downstream tasks, including
how leakage modality and degree affects the overall perfor-
mance of benchmarks (Sec. 7.3).

7.1. Intra-dataset leakage
To compute intra-dataset leakage (i.e., image overlap be-
tween training and evaluation samples within the same
dataset) we use datasets with both BENCHMARK and
TRAINING / PRETRAINING splits. That leaves us with

five datasets: COCO, GCC, ImageNet, OpenImages, and
TextCaps. For COCO, test splits are compared against train,
val, and unlabeled splits, and the val splits against the train
and unlabeled splits. We note that the val2014 split is in-
cluded in train2017.

Results Results are shown in Fig. 4. ImageNet test and
val, GCC val, and COCO val 2017 are the most leaked
datasets. The ImageNet test split has a hard leakage of
1.54% and a soft leakage of 1.95%, while the val split has
a slightly higher hard leakage of 1.58% but a lower soft
leakage of 1.78%. The second highest leaked dataset is
GCC followed by COCO, in which the val2017 split has
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Figure 3. Inter-dataset leakage. Columns indicate BENCHMARK and rows PRETRAINING datasets. Left is for hard leakage (in red), and
right for soft leakage (in blue).
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Figure 4. Intra-dataset leakage. Each dataset split in the y-axis is
matched against the samples in their corresponding train split.

a soft leakage of 3%. COCO test splits also present a soft
intra-dataset leakage between 1.35% and 1.38%. Both the
test and val splits of OpenImages have small rates of hard
leakage, 0.05%, but larger rates of soft leakage, 1.36% and
1.38%, respectively. TextCaps has the smallest leakage rate,
0.69%, and we do not find any hard leakage.

These results show that intra-dataset leakage occurs in
all the analyzed datasets, either in its hard or soft degree.
Given that data leakage can compromise model evaluation
and that datasets are specifically designed for this purpose,
intra-dataset leakage is a risk that by design should not exist.
Yet, we have identified multiple instances in all datasets.

7.2. Inter-dataset leakage
To compute intra-dataset leakage (i.e., leakage between
different datasets when a model has been trained on

PRETRAINING and evaluated on a BENCHMARK ), we
use GCC train, ImageNet train, OpenImages train, and
LAION as collection data and COCO 2014 test and val,
Flickr30K, TextCaps test, OpenImages test and val, and Im-
ageNet test and val as query data.

We extract CLIP ViT-B/32 embeddings in all datasets
except LAION, in which we use the provided precom-
puted embeddings.9 We found that LAION’s precomputed
embeddings do not fully match embeddings extracted by
CLIP’s official implementation.10 This is addressed by
rescaling query images as in the clip-retrieval11

repository. We conduct a knn search by building a single
index I per collection dataset, except for LAION, which we
found that due to its size, a single index yielded poor re-
trieval. Instead, we create an index per data partition, with
each partition containing a million images.

Results Results are shown in Fig. 3, where the columns
are BENCHMARK used as queries and the rows are
PRETRAINING used as collections. The left part, in red,

reports the hard leakage rate, whereas the right part, in blue,
is the soft leakage rate, both expressed as a percentage.
Overall, leakage exists in all datasets.

Figure 3a shows that while most of the rates are relatively
small, the highest rates of hard leakage are found in LAION,
specifically for the TextCaps and OpenImages test splits,
with about 3% hard leaked images (i.e., identical images).
OpenImages train split contains about 1.5% hard leaked im-
ages from COCO test and val splits. ImageNet, which is
one of the most common datasets for pretraining, also con-
tains hard leaked images from all the benchmarks. Among

9https://laion.ai/blog/laion-400-open-dataset/
10https://github.com/openai/CLIP
11https://github.com/rom1504/clip-retrieval
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(a) hard leakage (b) soft leakage

Figure 5. Examples of leaked images. Left: hard leakage, where images are identical, both within the same dataset (first row) and between
datasets (second row). Right: soft leakage, where images are near-identical.

the PRETRAINING datasets, GCC has the least hard leak-
age, with all rates remaining below 1%. Soft leakage (i.e.,
near-identical images) is shown in Fig. 3b. The dataset with
the most soft leakage is LAION, ranging from 1.09% to
7.91%. When comparing different BENCHMARK , Open-
Images test and val splits and TextCaps test split are the
most leaked ones, while Flickr30k shows the least soft leak-
age rates. Examples of both hard and soft leakage are shown
in Fig. 5. While hard-leaked images are identical, soft-
leaked samples are also extremely similar, often depicting
the same person or object in different poses.

In total, ImageNet, OpenImages, TextCaps, COCO, and
Flickr30k have 4.64%, 10.67%, 9.60%, 4.59%, and 1.81%
of their test samples leaked into LAION, respectively. Al-
though leakage rates may represent only a small fraction of
the BENCHMARK datasets, these results are worrisome, as
a model can potentially memorize the features of the leaked
test images and affect the downstream evaluation, as we will
see in Sec. 7.3.

7.3. Impact on downstream evaluation
The next natural step is to study the impact of data leak-
age on downstream evaluations. In particular, we evaluate
three tasks: zero-shot classification, supervised classifica-
tion, and text-image retrieval. In each task, we evaluate the
performance of a pretrained model on different subsets of
a BENCHMARK in which we know which samples have
been leaked into the PRETRAINING dataset. Then, we
compare the results on different subsets of the benchmark:
• original dataset: the whole benchmark containing N

samples.
• leaked set: a subset of A samples identified as leaked.
• non-leaked set: a subset of N −A samples that have not

been identified as leaked.
• random set: a subset of A samples randomly selected

from the original dataset, serving as a control set.

Table 2. Zero-shot classification accuracy on ImageNet val split
for different subsets, with and without leakage. The last column
(gain) indicates the difference with respect to the original dataset
(i.e., first row). We highlight the rows of the leaked subsets.

subset leakage images openclip gain

original - 50, 000 54.18 -

non-leaked hard 49, 729 54.15 −0.03

leaked hard 271 60.15 +5.97

random - 271 53.51 −0.67

non-leaked soft 2, 281 53.54 −0.64

leaked soft 2, 281 67.65 +13.47

random - 2, 281 54.84 +0.66

Zero-shot classification As VLMs tend to not fully dis-
close their training data [40], it is usually impossible to
identify their leaked samples. For this analysis, we rely on
OpenCLIP ViT-B-3212 pretrained on LAION, and evaluate
it on the ImageNet val split following [40].

Accuracy results for the different subsets on hard and
soft leakage are shown in Tab. 2. For both hard and soft
leakage, the subset of leaked images consistently achieves
much higher accuracy than the non-leaked images (+14.11
for soft leakage) and the randomly selected images (+12.81
for soft leakage). This strongly suggests that the model ben-
efits from exposure to leaked images during training. More-
over, the performance of the non-leaked subset decreases
from 54.15 to 53.54 when we exclude not only identical
images but also near-identical images. This corroborates
that near-identical images (i.e. soft leakage) are contribut-
ing to improved performance when seen during training. In
a zero-shot scenario where models are trained on different
PRETRAINING datasets, this is particularly problematic,

as the number of leaked images may vary between models,

12https://github.com/mlfoundations/open_clip
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Table 3. Supervised image classification accuracy on ImageNet
val split for different subsets, with and without leakage. Gain
columns indicate the difference with respect to the original dataset
(i.e., first row). We highlight the rows of the leaked subsets.

subset leakage images resnet50 gain resnet152 gain

original - 50, 000 80.37 - 82.83 -

non-leaked hard 49, 211 81.18 +0.81 83.65 +0.82

leaked hard 789 30.16 −50.21 31.69 −51.14

↪→ same label hard 11 100.00 +19.63 100.00 +17.17

↪→ different label hard 778 29.18 −51.19 30.72 −52.11

random - 789 83.27 +2.90 84.54 +1.71

non-leaked soft 36, 720 81.00 +0.63 83.52 +0.69

leaked soft 1, 680 62.44 −17.93 62.80 −20.03

↪→ same label soft 812 96.06 +15.06 95.44 +11.92

↪→ different label soft 868 30.99 −50.01 32.26 −51.26

random - 1, 680 80.24 −0.13 83.04 +0.21

Table 4. Image-to-text retrieval on Flickr30k for different subsets,
with and without leakage. Leaked subsets are highlighted.

subset leakage R@1 R@5 R@10

original - 33.22 55.25 64.13

non-leaked hard 36.00± 3.14 58.65± 4.19 66.15± 2.96

leaked hard 45.55 ± 1.19 70.80 ± 1.11 79.20 ± 0.67

random - 34.30± 2.85 55.95± 2.54 64.80± 2.67

non-leaked soft 33.05± 3.56 54.95± 3.12 63.75± 2.15

leaked soft 34.90 ± 2.07 59.05 ± 2.76 68.25 ± 2.12

random - 32.15± 3.56 56.35± 5.18 64.25± 4.21

making comparisons between them especially unfair.

Supervised classification We check how the intra-dataset
leakage on ImageNet affects two standard backbones,
ResNet50 and ResNet152, both pretrained on the train split
and evaluated on different subsets of the val split.

The results are in Tab. 3. At first sight, it seems that hard
leakage is greatly detrimental to model performance, reduc-
ing accuracy from 80.37% on the original dataset to just
30.16%. An in-depth inspection reveals the cause of this
behavior: the labels. Unlike in the zero-shot task, where
labels are not used during training, for supervised train-
ing, we observe full leakage. We find that 98.61% of the
hard-leaked images have different labels in the train and val
splits of ImageNet. In the samples in which the leaked la-
bels are the same, the accuracy raises to 100%, while in
the samples with different labels, accuracy is reduced to
29.18% and 30.72%, demonstrating that both ResNet50 and
ResNet152 are able to memorize leaked data. This also oc-
curs in the soft-leaked subset: leaked images where the la-
bel is the same get 96.06% and 95.44% accuracy, in contrast
to those where it is different, with accuracies of 30.99% and
32.26%, respectively.

Image-to-text retrieval Other than image classification,
we study the impact of data leakage on another task: image-
to-text retrieval. Given a query image, the goal is to find its
associated caption within a collection of captions. We eval-
uate OpenCLIP ViT-B-32 trained on LAION on different
subsets of the Flickr30k. For the results to be comparable
between subsets, we fix the number of queries to 200 im-
ages and the size of the collection to 31, 783 captions. We
repeat each experiment 10 times with 200 random images
from each subset and report results as the mean and stan-
dard deviation of retrieval at k (R@k), k = 1, 5, 10.

Results are shown in Tab. 4. The best performance
is achieved on the hard-leaked subset, being +9.55 and
+13.05 better than the non-leaked subset on R@1 and
R@10, respectively. Soft leakage has similar behavior, with
soft-leaked images being +4.5 R@10 over the equivalent
non-leaked images. While in this case most subsets out-
perform on average the full dataset results, this can be at-
tributed to the use of a much smaller query size of 200
instead of the original 31, 783 images in Flickr30k. Re-
gardless, the non-leaked subsets tend to have a larger vari-
ance than the leaked subsets, meaning that the latter pro-
duce more stable results, probably due to the model being
familiar with the leaked samples seen at training time.

8. Final remarks

Data leakage is a widespread issue, prevalent in most visual
datasets. Leakage can obscure the generalization ability of
models, which is particularly problematic when comparing
models trained on different datasets, leading to unfair com-
parisons. We urge dataset designers to carefully consider
the implications of these evaluations. For a fairer model
evaluation, we recommend the use of duplicate detectors
that considers both hard and soft leakage. Ideally, leaked
images should be removed from the training set, and if not
possible, they should at least be removed from the test set.

9. Conclusion

We thoroughly investigated data leakage in visual datasets.
We started by characterizing visual leakage, and proposed
a data leakage detector based on CLIP image retrieval. We
demonstrated the presence of data leakage not only between
different datasets (inter-dataset) but also within splits of
the same dataset (intra-dataset). Furthermore, we analyzed
the impact of data leakage on three downstream tasks, and
showed that models not only do memorize identical samples
(hard leakage), but also near-identical ones (soft leakage).
Overall, we showed consistent evidence that leakage poses
a serious threat to fair model evaluation in visual datasets,
compromising one of the most fundamental machine learn-
ing principles: to not evaluate models on their training data.
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new, Gabriel Ilharco, Dirk Groeneveld, Margaret Mitchell,
and Matt Gardner. Documenting large webtext corpora: A
case study on the colossal clean crawled corpus. In EMNLP,
2021. 1

[18] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
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