
NAS just once: Neural Architecture Search for joint Image-Video Recognition

Supplementary Material

This supplementary material is intended to provide im-
plementation details to allow procedure reproducibility. All
experiments were run on 8 NVIDIA A100 GPU with 40
GB of memory. Searching and training took from 1 day for
the smallest model to 5 days for the largest VIM-NAS-L
model. Appendix A gives hyper-parameters details for the
supernet training. Appendix B describes the pseudo-code
for supernet training under a joint-datasets scenario and su-
pernet selection through a perturbation-based differentiable
approach. Finally, Appendix C overviews the evolution-
ary algorithm we deployed to select top-performing subnet-
works under resource constraints.

A. Implementation details
We summarize the hyperparameters employed in our exper-
iments in Tab. 10. We employ for all the datasets random
spatial and temporal cropping. The provided details refer
to single-dataset experiments, presented in the first column
of Tab. 8b in the main paper. When joint training, the learn-
ing rate to be used is ImageNet’s, while the batch size is the
smallest among the video datasets. We experienced some
training instability on the search-space related to larger ViT
models, i.e. ViT-B and ViT-L. Therefore, we decreased the
weight decay value and the learning rate, to avoid the drop
of the training accuracy to 0 and the flat loss experienced
with larger values.

In the joint training scenario, we use separate fully con-
nected layers to output the correct class predictions alterna-
tively selected given the sampled dataset, e.g., for ImageNet
and Kinetics-600, we use two different FC layers, one with
1,000 and one with 600 outputs. The loss is computed inde-
pendently for each relevant head and is backpropagated at it
at each optimizer step. As previously stated in Sec. 3 of the
main paper, gradients are not accumulated as we found the
procedure to be detrimental to performance.

B. Details on Supernet Training
In this section we detail the elements of our supernet joint-
training strategy. Algorithm 1 describes the process of su-
pernet training with differentiable weight entanglement.
The algorithm is divided into two steps: we train the super-
net on ImageNet for epochs = 1, . . . E/3, while from E/3
to the end of training all four datasets are alternately sam-
pled according to a weight mechanism related to the num-
ber of training samples in the considered dataset. A dif-
ferent ViT sample α is randomly selected at each iteration.
Its weights are obtained from the supernet’s ones wA and
and used to compute loss of the subnet A(α;w). At last,

Algorithm 1: Supernet Training

1 Input: Training epochs E, search space S, supernet
A, initial supernet weights wA, train datasets
Di=1,...,4, Loss L

2 Output: Optimal architecture

3 for i = 1, . . . , E/3 do
4 for data, targets in D1 do
5 Random sample one ViT architecture

α = (α(1); . . . α(i); . . . α(l)) from the
space S where l is the maximum depth;

6 Sample the related weights
w = (w(1); . . . w(i); . . . w(l)) from wA;
Compute the gradients ∇w based on L,
data, and targets;

7 Backpropagate the Loss;
8 Update the corresponding part of w in wA

while freezing the remaining part of A;
9 Update the topological parameters according

to A = A − γ∇ALval(w∗,A);

10 for i = E/3, . . . , E do
11 for each optimizer step do
12 Sample data, targets from D1, . . . ,D4

according to |D| ;
13 Random sample one ViT architecture α as

in step 5;
14 Obtain the corresponding weights

w = (w(1); . . . w(i); . . . w(l)) from wA;
15 Compute the gradients∇w based on L, data,

and targets;
16 Backpropagate the Loss;
17 Update the corresponding part of w in wA as

in step 7;
18 Update the topological parameters according

to A = A − γ∇ALval(w∗,A);

19 return selected α∗ ←−A \ α giving lowest val.
accuracy drop;

we update the corresponding weights in wA while freezing
the rest and updating the topological structure through the
validation loss. The final architecture is selected through
a perturbation-based approach, which differs from DARTS.
Indeed, rather than choosing the maximum α values, we
progressively remove layer choices associated with the α
parameters and identify as best component the one leading
to the highest validation accuracy drop.

Table 10. Summary of hyperparemeters employed in our experiments. For Vit-B and Vit-L denoted as (L), a different learning rate and
weight decay were used.

ImageNet K400 K600 SSV2

Optimization
Optimizer AdamW
Batch size 1024 256 256 256
Learning rate schedule cosine + linear warmup
Linear warmup steps 20
Base learning rate 1e-3 (L 1e-5) 1e-4 (B 5e-5, L 2e-5) 2e-5
Epochs 500

Data augmentation
Rand augment ✓
Repeated augmentations ✗
Random erasing ✓
Weight Decay 5e-2 0.001 (L 1e-5) 1e-5
Cutmix 1.0 ✗ ✗ ✗
Mixup 0.8 ✗ ✗ 0.3
Drop path 0.1
Label Smoothing 0.1 ✗ ✗ 0.3
Number of Frames 1 64 64 32
FPS - 15 15 24

C. Details on Evolutionary Algorithm
The evolutionary algorithm is used as an alternative search
algorithm to find the optimal architectures when the search
needs to be performed under resource constraints. More-
over with our setup, because the subnetworks are all well
trained, the evolutionary algorithm brings the advantage of
obtaining many subnetworks well-solving the task. There-
fore, as in the differentiable formulation we did not place
additional constraints on resources as we noticed it would
have led to unstable training, we detail the evolutionary al-
gorithm we deployed for the resource-constrain scenario.
In Algorithm 2 crossover is realized by randomly selecting
two candidate architectures from the top ones. A block is
then uniformly chosen from each candidate in each layer to
generate a new child network. Mutation verifies by chang-
ing a candidate depth with probability Pd and then mutating
each block with a probability of Pm. As the evolution algo-
rithm is deployed under resource constraints, a final check
chooses to add the newly produced architectures based on
the satisfaction of the selected constraint (e.g. the number
of parameters).

Algorithm 2: Evolutionary Algorithm

1 Input: Search space S, supernet A, supernet
weights w∗

A, population size N , resource
constraints f , # of generation iterations T ,
validation dataset Dval, mutation probability of
depth Pd, mutation probability of each layer Pm

2 Output: The best ViT α∗ satisfying the contraints

3 G(0) := Random sample N architectures
(α1, . . . , αN) from A with the constraint f ;

4 while search step t ∈ (0, T) do
5 for αi ∈ G(t) do
6 Get the related weight wαi

from the supernet
weights wA;

7 Calculate the accuracy of the subnet
A(αi, wαi) on the validation set Dval;

8 Gtopk := the Top K candidates by accuracy order;
9 Gcrossover := Crossover(Gtopk, C);

10 Gmutation := Mutation(Gtopk, Pd, Pm, C);
11 G(t+1) = Gcrossover ∪Gmutation;
12 return Best performing subnetworks;

	Implementation details
	Details on Supernet Training
	Details on Evolutionary Algorithm

