
Appendix
.1. Detailed Proofs
In this section, we provide the detailed proofs of the manuscript.

Theorem .1. Let H = {hi | 8i 2 [N ],hi 2 R
DE} be set of embedding features of N points, and the corresponding label set

is given as Y = {yi | 8i 2 [N ], y 2 [K]}. For a fixed batch size |B|, we define a set of sub-sampling index sets of size |B| as
B such that

B = {{n1, n2, . . . , nB}|ni 2 [N ], 8i 2 [B]}.

We have

LOCL(H;Y ) �

|B|X

l=2

lMl log

✓
l � 1 +

|B|� 1

e

◆
(6)

where Ml =
P

y2[K] |{B 2 B||By| = l}|, and the set By consists of all samples with label y in the batch B. Equality is
attained if and only if there are K orthonormal vectors ⇠1, ⇠2, . . . , ⇠K 2 RDE with a large DE , s.t. K < DE can be obtained
under the condition that 8n 2 [N ] : hn = ⇠yn .

Several steps are presented in order to prove Theorem .1 as follows.
Step 1: First let us define BC

y
to be the complementary set of By such that By +BC

y
= B. For any class y and any batch

B 2 B, the class-specific loss LOCL(H;Y,B, y) can be bounded by

LOCL(H;Y,B, y)

�|By| log(|By|� 1 + |BC

y
| exp(S(H;Y,B, y)))

(7)

where function S can be defined as

S(H;Y,B, y) = Satt(H;Y,B, y) + Srep(H;Y,B, y) (8)

In Eq. (9), we further introduce the two functions Satt() and Srep() respectively below

Satt(H;Y,B, y) = �
1

|By|(|By|� 1)

X

i2By

X

j2By\{{i}}

hhi,hji

Srep(H;Y,B, y)

=

(
1

|By||BC
y |
P

i2By

P
j2BC

y
| hhi,hji |, if |By| 6= |B|

0, if |By| = |B|

(9)

Lemma .2. For any class y and any batch B 2 B, the class-specific loss LOCL(H;Y,B, y) can be bounded by

LOCL(H;Y,B, y)

�|By| log(|By|� 1 + |BC

y
| exp(S(H;Y,B, y)))

(10)

where equality holds iff all of the following hold:
(A1) 8i 2 B there is a Ci(B, y) such that 8j 2 By \ {{i}}, hhi,hji = Ci(B, y).
(A2) 8i 2 B there is a Di(B, y) such that 8j 2 BC

y
, | hhi,hji | = Di(B, y).

Proof.
LOCL(H;Y,B, y)

=�

X

i2By

1

|Byi |� 1

X

j2Byi\{{i}}

log(
exp(hhi,hji)P

k2B\{{i}} exp(| hhi,hki |)
)

=
X

i2By

log

 P
k2B\{{i}} exp(| hhi,hki |)

⇧j2Byi\{{i}} exp(| hhi,hji |)1/(|Byi |�1)

!

=
X

i2By

log

 P
k2B\{{i}} exp(| hhi,hki |)

exp((|Byi |� 1)�1
P

j2Byi\{{i}}
| hhi,hji |)

!

(11)
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In Eq. (11), we can further reorganize the numerator below.
X

k2B\{{i}}

exp(| hhi,hki |) =
X

k2By\{{i}}

exp(hhi,hki) +
X

k2BC
y

exp(| hhi,hki |) (12)

Using Jensen’s inequality on both sums, one can attain In Eq. (11), we can further reorganize the numerator below.

X

k2By\{{i}}

exp(hhi,hki)
(A1)
� |By \ {{i}}| exp

 P
k2By\{{i}} hhi,hki |

|By \ {{i}}|

!

X

k2BC
y

exp(| hhi,hki |)
(A2)
� |BC

y
| exp

 P
k2By\{{i}} | hhi,hki |

|BC
y
|

! (13)

where the the equality holds if and only if
(A1) 9Ci(B, y) such that 8j 2 By \ {{i}}, | hhi,hji | = Ci(B, y).
(A2) 9Di(B, y) such that 8j 2 BC

y
, | hhi,hji | = Di(B, y).

Plugging Eq. (14) in Eq. (12), we obtain the bound of each addend as
P

k2B\{{i}} exp(| hhi,hki |)

exp((|Byi |� 1)�1
P

j2Byi\{{i}}
| hhi,hji |)

� |B \ {{i}}|+ |BC

y
| exp

 P
k2BC

y
| hhi,hki |

|BC
y
|

�

P
k2B\{{i}} | hhi,hki |

|B \ {{i}}|

! (14)

So with the definition of S(H;Y,B, y), we can obtain the claimed bound

LOCL(H;Y,B, y)

�|By| log(|By|� 1 + |BC

y
| exp(S(H;Y,B, y)))

(15)

Lemma .3. Let l 2 {2, . . . , |B|}. For Y 2 [K] and H , we have LLOCL(H,Y ) =
P

B2B
P

y2[K] LOCL(H;Y,B, y), we
have

1

Ml

X

B2B

X

y2[K]

log(l � 1 + (|B|� l) exp(S(H;Y,B, y)))

� log

✓
l � 1 + (|B|� l) exp

✓
1

Ml

S(H;Y,B, y)

◆◆ (16)

where Ml =
P

y2[K] |By,l| and By,l is an auxiliary partition of B such that By,l = {Byi ||Byi | = l, 8i 2 [K]}. The equality
holds if and only if

(A3) l = |B| or there exists D(l) such that for every y 2 [K] and B 2 By,l the values of S(H;Y,B, y) = D(l) agree.

Proof. Since f(x) = log(l � 1 + (|B|� l) exp(|x|)) is a convex function, using Jensen’s inequality, for every y 2 [K] and
B 2 By,l, we have

1

|By,l|

X

B2B

X

y2[K]

f(S(H;Y,B, y))
(A3)
� f

0

@ 1

|By,l|

X

B2B

X

y2[K]

S(H;Y,B, y)

1

A (17)

where the equality can be obtained if and only if A3 holds.

Step 2: Next, we use the bound of LOCL(H;Y,B, y) derived from Lemma .2 and Lemma .3 to get the bound for
LOCL(H,Y ).

Lemma .4. For every Y and H the orthonormal contrastive loss LOCL is bounded by

LOCL �

|B|X

l=2

lMl log

✓
l � 1 + (|B|� l) exp

✓
1

Ml

S(H;Y,B, y)

◆◆
(18)

where the equality holds if and only if
(B1) 8n,m 2 [N ], if yn = ym, it implies hhn, hmi ⌘ ⌘.
(B2) 8n,m 2 [N ], if yn 6= ym, it implies | hhn, hmi | ⌘ �.
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Proof.
LOCL(H,Y ) =

X

B2B

X

y2[K]

LOCL(H;Y,B, y)

=

|B|X

l=2

X

y2[K]

X

B2By,l

LOCL(H;Y,B, y)

�

|B|X

l=2

X

y2[K]

X

B2By,l

l log(l � 1 + (|B|� l) exp(S(H;Y,B, y)))

�

|B|X

l=2

lMl log

0

@l � 1 + (|B|� l) exp

0

@ 1

Ml

X

y2[K]

X

B2By,l

S(H;Y,B, y)

1

A

1

A

(19)

The first and second inequality can be attained via Lemma .2 and Lemma .3. The equality can be achieved if and only if (A1),
(A2), and (A3) are true. It can be further proved that (A1)&(A2)&(A3) , (B1)&(B2).

We first prove “ (”.
(A1) For an arbitrary l 2 {2, . . . , |B|}, y 2 Y , B 2 By,l and i 2 B, we let j 2 By \ {{i}}, i.e., yj = yi = y. Then we

have hhi, hji = ⌘ = Ci(B, y).
(A2) For an arbitrary l 2 {2, . . . , |B|}, y 2 Y , B 2 By,l and i 2 B, we let j 2 BC

y
, i.e., yj = yi = y. Then we have

| hhi, hji | = � = Di(B, y).
(A3) For an arbitrary l 2 {2, . . . , |B| � 1}, y 2 Y , and B 2 By,l, with condition (B1), Satt(H;Y,B, y) = �⌘, and by

condition (A2), Srep(H;Y,B, y) = ��. So we have S(H;Y,B, y) = Satt(H;Y,B, y) +Srep(H;Y,B, y) = � � ⌘ = D(l).
Next, we prove “ )”.
(B1) We aim to prove that given y, y0 and m,n,m0, n0

2 [N ] with ym = yn = y and ym0 = yn0 = y0, we can induce that
| hhn, hmi | = | hhn0 , hm0i |.

Case I:
If y 6= y0, we choose l = 2 and we specify the batch B0 = {{n,m, n0, . . . , n0

}} with the size b. We can get

S(H,Y,B0, y)

=Satt(H;Y,B, y) + Srep(H;Y,B, y)

=� hhn, hmi+
| hhn, hn0i |

2
+

| hhn0 , hmi |

2

(20)

With (A2), we can further get S(H;Y,B, y) = �| hhn, hmi | + | hhn0 , hni |. Similarly, we can specify the batch B00 =
{{m0, n0, n, . . . , n}} with the size b and we can get S(H,Y,B00, y = �| hhn0 , hm0i |+ | hhn0 , hni |). Combining these two
equations with condition (A3), one can deduce that | hhn, hmi | = | hhn0 , hm0i |.

Case II: If y = y0, we choose l = 2 and we specify the batch B0 = {{m,n, p, . . . , p}} with the size b. Following the similar
procedure in Case I, with (A2), we can further get S(H,Y,B0, y) = �| hhm, hni |+ | hhn, hpi |. Similarly, we can specify
the batch B00 = {{m0, n0, p, . . . , p}} with the size b and we can get S(H,Y,B0, y = �hhn0 , hm0i+ hhn0 , hpi). Combining
these two equations with condition (A3), one can deduce that �| hhn, hmi |+ | hhn, hpi | = | hhn0 , hm0i |+ | hhn0 , hpi |.

Now, pick the batch B3 = {{hm, hm, p, . . . , p}}. With condition (A2), we have | hhn, pi | = | hhm, pi | and thus
| hhn0 , hm0i | = | hhn, hmi |.

(B2) We aim to prove that given y 6= y0, | hhn, hn0i | = | hhm, hm0i |.
We still choose l = 2 and we specify two batches as B0 = {{n, n, n0, . . . , n0

}} with the size |B| and B00 =
{{m,m,m0, . . . ,m0

}} with the size |B|. Assuming Satt(H;Y,B, y) = �⌘ and thus

S(H,Y,B0, y)

=� ⌘ + Srep(H,Y,B0, y)

=� ⌘ +
1

2(|B|� 2)

X

i2B0
y

X

j2B0
y
C

| hhi, hji |

=� ⌘ + | hhn, hn0i |

(21)
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Similar to Eq. 21, we have S(H,Y,B00, y) = �⌘ + | hhm, hm0i |. With (A3), we have S(H,Y,B00, y) = S(H,Y,B0, y)
so that | hhn, hn0i | = | hhm, hm0i |.

With (A2), we can further get S(H;Y,B, y) = �| hhn, hmi | + | hhn0 , hni |. Similarly, we can specify the batch B00 =
{{m0, n0, n, . . . , n}} with the size b and we can get S(H,Y,B00, y = �| hhn0 , hm0i |+ | hhn0 , hni |). Combining these two
equations with condition (A3), one can deduce that | hhn, hmi | = | hhn0 , hm0i |.

Step 3:
Now we will partition the bounding problem into two components which characterize the intra-class bound and the

inter-class bound respectively. Mathematically, a decomposition can be written as
X

y2Y

X

B2By,l

S(H;Y,B, y)

=
X

y2Y

X

B2By,l

Satt(H;Y,B, y) +
X

y2Y

X

B2By,l

Srep(H;Y,B, y)
(22)

We first address the first addend in Eq. 23 in the following lemma. And the rest of the lemmas focus on the second addend.

Lemma .5. Let l 2 {2, . . . , |B|} and let H to be the unit vector on a unit sphere. For every Y and H , it holds that

X

y2Y

X

B2By,l

Satt(H;Y,B, y) � �

0

@
X

y2Y

|By,l|

1

A (23)

where the equality is attained if and only if: (A4) 8m,n 2 [N ], ym = yn implies hm = hn.

Proof.

Satt(H;Y,B, y) =�
1

|By||By \ {{i}}|

X

i2By

X

j2By\{{i}}

hhi, hji

� �
1

|By||By \ {{i}}|

X

i2By

X

j2By\{{i}}

hihj

=� 1

(24)

which can be obtained by using Cauchy-Schwarz inequality. The equality holds if and only if hi and hj are identical since the
hi and hj are unit vectors. So the equality condition can be written as (A4) 8m,n 2 [N ], ym = yn implies hm = hn.

Now, we use Lemma 3 and Lemma 4 to prove the bound for our orthonormal supervised contrastive loss.

Lemma .6. The orthonormal contrastive loss LOCL(H,Y ) is bounded from below by

LOCL(H,Y ) �

|B|X

l=2

lMl log

✓
l � 1 +

|B|� 1

e

◆
(25)

where equality is achieved if and only if there exists {⇠1, . . . , ⇠Y } such that the following conditions hold:
(C1) 8n 2 [N ], hn = ⇠yn .
(C2) {⇠1, . . . , ⇠Y } are pairwise orthonormal.

Proof. Utilizing the lower bound of Satt in Lemma .5, we can bound the exponential term in Lemma .4 first below
X

y2[K]

X

B2By,l

S(H;Y,B, y)

�

X

y2[K]

X

B2By,l

Satt(H;Y,B, y) +
X

y2[K]

X

B2By,l

Srep(H;Y,B, y)

�

X

y2Y

|By,l|⇥ (�1) + 0

=� |Y |

X

y2Y

|By,l|

(26)
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where the second term
P

y2[K]

P
B2By,l

Srep(H;Y,B, y) � 0 and
P

y2[K]

P
B2By,l

Srep(H;Y,B, y) = 0 if and only if
{⇠1, . . . , ⇠Y } are pairwise orthonormal and 8n 2 [N ], hn = ⇠yn . So we can further derive the bound for LOCL as follows.

LOCL(H,Y )

�

X

y2[K]

X

B2By,l

S(H;Y,B, y)

�

|B|X

l=2

lMl log

✓
l � 1 + (|B|� l) exp

✓
1

Ml

S(H;Y,B, y)

◆◆

�

|B|X

l=2

lMl log

✓
l � 1 + (|B|� l) exp

✓
�

P
y2Y

|By,l|

Ml

◆◆

�

|B|X

l=2

lMl log

 
l � 1 + (|B|� l) exp

 
�

P
y2Y

|By,l|P
y2Y

|By,l|

!!

�

|B|X

l=2

lMl log

✓
l � 1 +

|B|� l

e

◆

(27)

With Lemma 5, Theorem 1 is readily attained.
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Figure 8. The end-to-end learning of the LOCAL model.

.2. End-to-End Learning of Paired Inputs
Fig. 8 shows the overview framework for learning both representation and classification based on paired inputs. It includes
two parts: the first part learns a feature mapping with the property of intra-class compactness and inter-class separability;
whereas the second part is expected to learn a less biased classifier based on the orthonormal representations produced by the
first part. We take the damage detection task as an example where pre- and post-disaster image pair is denote by (xpre,xpost).
Encoder Network, Enc(·), can employ any suitable backbone network, e.g., ResNet[13], and maps either image xpre and
xpost in the pair to a vector representation, rpre = Enc(xpre) 2 RDR and rpost = Enc(xpost) 2 RDR , whereas rpre and
rpost are normalized to be on the unit hypersphere in RDR .
Latent Hierarchical Feature Correlation Module, Lat(·), is a module injected into the backbone network to learn latent
hierarchical joint representation between xpre and xpost. Specifically, from the backbone network, we firstly extract the
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multi-scale outputs of each block (e.g., four blocks for ResNet) and then the feature correlation between the pre- and post-event
outputs from each block. Denote the output from each block as Enc0

i
(·), i 2 [1, ..., 4]. Our feature correlation module can be

computed as Enc0
i
(xpre), Enc0

i
(xpost))) = Wi([Enc0

i
(xpre), Enc0

i
(xpost)]) where the matrix Wi 2 Rdi⇥2di denotes the

correlation parameters, and [Enc0
i
(xpre), Enc0

i
(xpost)] 2 R2di is the concatenated vector of Enc0

i
(xpre), Enc0

i
(xpost) 2 Rdi .

Practically, Wi can be set to compute the difference between pre- and post-event outputs, yielding satisfactory results. Then
the feature correlation maps (lower left part of Fig. 6) illustrate the variation in dual images. These maps are resized to the
same size via average pooling and up-sampling, and concatenated to form a hierarchical latent feature maps. Then, averaging
over all channels produces a single channel feature map, which is then flattened and normalized to give a latent feature
embedding l = Lat(xpre,xpost) 2 RDL . This embedding incorporates latent supervision from the backbone network, and
then contributes to the computation of latent orthonormal contrastive loss LOCL(l).
Projection Network with Feature Correlation Module, Proj(·) maps rpre and rpost to the corresponding embedding
vectors epre = Proj(rpre) 2 RDE and epost = Proj(rpost) 2 RDE . This network is a multi-layer perceptron (MLP) with
a hidden layer and an output layer of size DE . It has been shown that such a projection module improves the quality of
the embeddings of the layers preceding it [4, 17]. We apply an `2 normalization to epre and epost to ensure that the inner
product can be used as the cosine similarity measure. A similar feature correlation module is incorporated to learn the
variation between the pre- and post- outputs of the projection network. z = W([epre, epost]) is used to compute the OCL loss
LOCL(z).

In our framework, the proposed OCL takes effect on both the latent hierarchical feature embedding l and the joint
embbedding of the paired inputs z, leading to the latent OCL loss:

LOCL(z, l) = LOCL(z) + �LOCL(l) (28)

where � � 0 is a hyperparameter for tuning and LOCL(l) can be regarded as a regularizer which regularizes the orthonormality
class representations of lower-level features (with high contrast) that are extracted by the deep neural network. Imposing this
regularizer helps learn the final inter-class orthonormal embeddings.
Classification Network, Clas(·), takes in the concatenated representation, concat(rpre, rpost), from the Encoder Network. A
non-linear MLP with a hidden layer and an output layer of the class size is employed to predict the class-wise logit values
c 2 RDC of the input image pair, which are used to compute the weighted cross-entropy (WCE) loss LWCE . Combining with
the WCE loss for classifier learning where the weight is the reciprocal of the appearance frequency of each class, we arrive at
our final loss function of our proposed LOCAL: Latent Orthonormal Contrastive Learning Framework:

Total loss = ↵LOCL(z, l) + (1� ↵)LWCE (29)

where 0  ↵  1 is a weighting coefficient inversely proportional to the number of epochs.

.3. Implementation Details of SCL and L-SCL

Fig. 9 shows the detailed architecture of SCL model, where LSCL = ↵LSCL(z) + (1� ↵)LWCE . Fig. 10 shows the detailed
architecture of L-SCL model, where LL-SCL = ↵LSCL(z, l) + (1� ↵)LWCE .
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Figure 9. The end-to-end learning of the SCL model, LSCL = ↵LSCL(z) + (1� ↵)LWCE .
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Figure 10. The end-to-end learning of the L-SCL model, LL-SCL = ↵LSCL(z, l) + (1� ↵)LWCE .

.4. Generalizability on Benchmark Datasets with Single Image as Input

Additionally, we have performed experiments on benchmark datasets with single image as sample such as CIFAR-10-LT
and CIFAR-10-LT and iNatualist-LT, to verify the effectiveness of OCL over SCL, as shown in Table 6. The obtained
results suggest that encouraging orthonormality leads to improved performance, especially with small batch sizes: employing
relatively small batch sizes for training: (4, 8, 12), (32, 64, 80) and (4, 8, 16) for each of the corresponding datasets.

We also conduct experiments on ImageNet-LT with limited epochs (thus not fully trained). We test different small batch
sizes such as 4, 8, and 16 to simulate memory constraints and evaluate how OCL performs under such conditions. OCL is
expected to show better performance over SCL, particularly in small batch sizes and under short training durations, as OCL
optimizes representation more efficiently by encouraging orthonormality, which can help even under limited epochs.
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Dataset BS SCL OCL
Accuracy F1-macro Accuracy F1-macro

CIFAR-10-LT
4 88.25 ± 1.47 67.32 ± 1.23 88.79 ± 1.32 71.25 ± 1.55
8 92.29 ± 1.23 80.48 ± 1.35 92.58 ± 1.42 80.70 ± 1.21

12 92.67 ± 1.10 80.90 ± 1.20 93.25 ± 1.31 81.42 ± 1.41

CIFAR-100-LT
32 74.90 ± 1.42 49.21 ± 1.33 75.30 ± 1.35 50.85 ± 1.25
64 77.95 ± 1.20 53.43 ± 1.14 78.20 ± 1.30 53.55 ± 1.40
80 78.35 ± 1.10 54.20 ± 1.23 78.65 ± 1.17 53.77 ± 1.31

iNaturalist-LT
4 87.51 ± 1.38 65.09 ± 1.21 87.73 ± 1.32 70.42 ± 1.42
8 93.10 ± 1.15 86.77 ± 1.09 93.51 ± 1.24 87.07 ± 1.16

16 93.93 ± 1.08 88.99 ± 1.12 94.25 ± 1.15 90.02 ± 1.19

Table 6. Performance on benchmark datasets.

Dataset BS SCL OCL
Accuracy F1-macro Accuracy F1-macro

ImageNet-LT
4 5.74 ± 0.69 4.35 ± 0.52 7.12 ± 0.88 5.66 ± 0.74
8 15.58 ± 1.23 13.55 ± 1.07 17.55 ± 1.40 15.29 ± 1.32
16 26.71 ± 1.53 23.65 ± 1.48 29.32 ± 1.62 26.06 ± 1.55

Table 7. Performance on ImageNet-LT.

.5. Generalizability on Benchmark Datasets of Natural Language Inference with Paired Sentences as Input
We evaluate the applicability of OCL for NLP on the Stanford Natural Language Inference (SNLI) dataset (Bowman, Samuel
R., et al. ”A large annotated corpus for learning natural language inference.” arXiv preprint arXiv:1508.05326 (2015).). This
corpus consists of sentence pairs written and annotated by humans. Each sentence pair is comprised of a “premise” and
“hypothesis” sentence. The relationship between the premise and hypothesis is assigned to one of three labels: “entailment”,
“contradiction”, or “neutral”. To craft a challenging, imbalanced subset of this collection to demonstrate OCL’s robust
performance, we randomly select only 50%, 20%, and 5% of the pairs in the categories, respectively, to be retained from the
SNLI training dataset. This creates a 1:10 imbalance ratio in training dataset; we leave the SNLI validation and testing sets
unchanged.

Batch Size PairSCL-Baseline PairSCL-OCL
4 86.86 (86.82-86.89) 87.33 (87.29-87.37)
8 86.92 (86.83-86.87) 87.3 (87.27-87.33)

16 87.37 (87.35-87.4) 87.19 (87.16-87.23)
32 87.1 (87.08-87.13) 87.33 (87.28-87.36)

Table 8. Performance on imbalanced SNLI dataset for NLP

We implement OCL on the existing framework of PairSCL [19], and replace the SCL term with our OCL to learn
orthonormal embeddings and evaluate the subsequent performance on the crafted imbalanced SNLI dataset. In Table 8, we
report the baseline performance of PairSCL, i.e., the unchanged implementation of PairSCL, against PairSCL-OCL, i.e,
PairSCL modified with OCL.

Our proposed method consistently outperforms, or at least matches, the baseline of SCL loss.Meanwhile, our OCL loss
exhibits greater stability across various batch sizes, ranging from 4 to 32. It may be confusing that SCL excel with a batch
size of 16. SCL has been demonstrated to be effective on imbalanced datasets with a moderately sized batch, as overly large
batches can introduce an excessive number of negative examples for samples from minority classes, thereby reducing the
effectiveness of learning from these minority samples (Mitrovic, Jovana, Brian McWilliams, and Melanie Rey. ”Less can be
more in contrastive learning.” (2020): 70-75.). Conversely, overly small batch sizes may lead to unstable learning outcomes
for SCL. Determining the optimal batch size for SCL is challenging, as evidenced by our empirical findings that SCL reaches
its peak performance with a batch size of 16. In contrast, our proposed OCL loss shows relative stability across a range of
batch sizes.
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