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Supplementary Material

A. 3D Class-agnostic Segmentation
A.1. Related Work
SA3D [2] uses user-provided prompts, such as points or
bounding boxs, to generate segmentation masks in refer-
ence views, which are then used to train a neural field
for object segmentation. Similarly, Spin-NeRF [12] em-
ploys a video-based segmenter [1] to generate multi-view
masks. GARField [8] addresses inconsistencies in SAM-
generated masks across different views by incorporating
a scale-conditioned feature field. OmniSeg3D [16] intro-
duces hierarchical contrastive learning to refine 2D SAM
masks into a feature field, achieving fine-grained segmenta-
tion through adaptive cosine similarity thresholds. However,
above methods rely on NeRF-based structures, which im-
pose high computational costs during rendering, limiting
their real-time applicability.

A.2. Contrastive Feature Learning
After obtaining segmentation masks from SAM and the cor-
responding mask-level language embeddings {Ft | t =
1, . . . , T}, {Mt | t = 1, . . . , T}, we learn class-agnostic
instance features by modeling the relationship between 3D
points and 2D pixels. For simplicity, we denote the fused
context-aware language feature Ffuse(t) as Ft in the follow-
ing discussion. Following OpenGaussian and other class
agnostic segmentation work [3, 8, 15, 15, 16], we train in-
stance features for 3D Gaussians using segmentation masks.

Each Gaussian is assigned a low-dimensional instance
feature f ∈ R6. To enforce multi-view consistency, we ap-
ply contrastive learning, bringing Gaussians within the same
mask instance closer while pushing those from different in-
stances apart. The instance feature map Mf ∈ R6×H×W is
obtained via alpha-blending, with binary masks Bi defining
object instances:

{B0, B1, . . . , Bi} = {I(M = i) | i ∈ Mt}, (1)

To ensure feature consistency within an instance, we com-
pute the mean feature within each mask:

M̄f
i =

Bi ·Mf∑
Bi

∈ R6. (2)

The intra-mask smoothing loss encourages all pixels within
an instance to align with their mean feature:
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To enhance feature distinctiveness across instances, we de-
fine the inter-mask contrastive loss:
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1

m(m+ 1)
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i=1
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j=1,j ̸=i

1∥∥∥M̄f
i − M̄f

j

∥∥∥2 , (4)

where m is the number of masks, and M̄f
i , M̄

f
j are mean

features of different instances.
These losses ensure cross-view consistency for the same

object while maintaining feature distinctiveness across dif-
ferent objects.

A.3. Two-Level Codebook Feature Discretization
After training instance features on 3D Gaussians, we apply a
two-level coarse-to-fine clustering [15] to segment objects.

At the coarse level, we cluster Gaussians using both 3D
coordinates X ∈ Rn×3 and instance features f ∈ Rn×6,
ensuring spatially aware segmentation:

f ∈ Rn×6, X ∈ Rn×3 → {Ccoarse ∈ Rk1×(6+3),

Icoarse ∈ {1, . . . , k1}n}, k1 = 64.
(5)

At the fine level, we further refine clusters using only in-
stance features:

f ∈ Rn×6 → {Cfine ∈ R(k1×k2)×6,

Ifine ∈ {1, . . . , k2}n}, k2 = 10.
(6)

where {C, I} means quantized features and cluster indices at
each level of codebook.

We use K-means clustering [11] at both stages, with
k1 clusters at the coarse stage and k1 × k2 clusters at the
fine stage. This hierarchical approach preserves geometric
integrity, ensuring that spatially unrelated objects are not
grouped together.

During instance feature learning, supervision is limited to
binary SAM masks. In the codebook construction stage, clus-
tered instance features act as pseudo ground truth, replacing
mask-based losses. The new training objective minimizes the
difference between rendered pseudo-ground-truth features
Mp and quantized features M c:

Lp = ∥Mp −M c∥1, (7)

This process refines instance segmentation while maintain-
ing feature consistency and geometric structure in the 3D
Gaussian representation.



A.4. Instance-Level 3D-2D Association

To establish a robust link between 3D Gaussian instances
and multi-view 2D masks, we adopt an instance-level 3D-2D
association strategy inspired by OpenGaussian [15]. Unlike
prior methods that require additional networks for compress-
ing language features or depth-based occlusion testing, our
approach retains high-dimensional, lossless linguistic fea-
tures while ensuring reliable associations.

Specifically, given a set of 3D clusters obtained from
the discretization process (Sec. A.3), we render each 3D
instance to individual views, obtaining single-instance maps
M i ∈ R6×H×W . These maps are compared with SAM-
generated 2D masks Bj ∈ {0, 1}1×H×W using an Intersec-
tion over Union (IoU) criterion. The SAM mask with the
highest IoU is initially assigned to the corresponding 3D in-
stance. However, to address occlusion-induced ambiguities,
we further refine the association by incorporating feature
similarity.

Instead of relying on depth information for occlusion
testing, we populate the boolean SAM mask Bj with pseudo-
ground truth features, forming a feature-filled mask P j ∈
R6×H×W . We then compute a unified association score:

Sij = IoU(π(M i), Bj) · (1− ∥M i − P j∥1), (8)

where π(·) denotes a binarization operation, ensuring
IoU alignment, while the second term penalizes large feature
discrepancies. The mask with the highest score is then asso-
ciated with the 3D instance, allowing us to bind multi-view
CLIP features effectively to 3D Gaussian objects.

By integrating both geometric alignment and semantic
consistency, our method ensures precise and robust language
embedding associations across multiple views.

B. Implementation Details

B.1. SAM and Clip Backbone

At the preprocessing stage, we utilize SAM-LangSplat,
which is a modified version of SAM [9] for LangSplat [13]
that automatically generates three levels of masks: whole,
part, and sub-part. We select level 3 SAM masks (whole) [9]
and use the ViT-H SAM model checkpoint for segmentation.

For feature extraction, we adopt Convolutional CLIP [10],
a CNN-based variant of CLIP that empirically demonstrates
better generalization than ViT-based CLIP [5] when handling
large input resolutions [17] and better intermediate feature
for our global feature extraction. Since competing methods
use the ViT-B/16 checkpoint, we select the ConvNeXt-Base
checkpoint, which has a comparable ImageNet zero-shot
accuracy, ensuring a fair comparison of 2D backbone archi-
tectures.

Table 1. Ablation study on ScanNet with different feature aggrega-
tion weights. Metrics are reported as mIoU and mAcc for 10, 15,
and 19 class settings.

Context Feature Weight α mIoU (10, 15, 19) mAcc (10, 15, 19)

0 0.42, 0.33, 0.33 0.60, 0.50, 0.49
0.2 0.51, 0.38, 0.38 0.69, 0.55, 0.54
0.4 0.51, 0.39, 0.38 0.68, 0.56, 0.55
0.6 0.50, 0.38, 0.38 0.68, 0.56, 0.54
0.8 0.47, 0.36, 0.35 0.65, 0.54, 0.52
1 0.50, 0.37, 0.37 0.68, 0.55, 0.53

B.2. Training Strategy
We follow OpenGaussian [15] general training settings. For
the ScanNet dataset [4], that keep point cloud coordinates
fixed and disable 3D Gaussian Splatting (3DGS) densifica-
tion [6]. For the LeRF dataset [7], we optimize point cloud
coordinates and enable 3DGS densification, which is stopped
after 10k training steps.

B.3. Training Time
All experiments are conducted on a single NVIDIA RTX
4090 GPU (24GB). For the LeRF dataset, each scene consists
of approximately 200 images and requires around 60 minutes
for training. For the ScanNet dataset, scenes contain 100–300
images, with an average training time of 30 minutes per
scene.

B.4. ScanNet Dataset Setup
We align our Scannet Dataset test dataset with [15]
on 10 randomly selected ScanNet scenes, specifically:
scene0000 00, scene0062 00, scene0070 00,
scene0097 00, scene0140 00, scene0200 00,
scene0347 00, scene0400 00, scene0590 00,
scene0645 00.

For text-based queries, we utilize 19 ScanNet-defined
categories:
• 19 categories: wall, floor, cabinet, bed, chair, sofa, table,

door, window, bookshelf, picture, counter, desk, curtain,
refrigerator, shower curtain, toilet, sink, bathtub

• 15 categories: wall, floor, cabinet, bed, chair, sofa, table,
door, window, bookshelf, counter, desk, curtain, toilet, sink

• 10 categories: wall, floor, bed, chair, sofa, table, door,
window, bookshelf, toilet
Training images are downsampled by a factor of 2, and

we use the cleaned point cloud that is processed by Open-
Gaussian.

B.5. Addional Results
We have conducted an ablation study (Tab. 1) to evaluate the
impact of different weighting strategies on performance. This
analysis demonstrates the robustness of our approach and
highlights the sensitivity of the final segmentation quality to



Table 2. Per-scene performance of 3D point cloud semantic segmentation on the ScanNet dataset based on text query at different class splits
(10 / 15 / 19 classes).

Scene ID 10-class 15-class 19-class

mIoU ↑ mAcc. ↑ mIoU ↑ mAcc. ↑ mIoU ↑ mAcc. ↑
scene0000 00 0.4744 0.7469 0.4054 0.6208 0.4230 0.6149
scene0062 00 0.4103 0.6476 0.2907 0.5372 0.2923 0.5372
scene0070 00 0.5227 0.6100 0.3899 0.4497 0.3498 0.4086
scene0097 00 0.5607 0.7321 0.3419 0.5689 0.3620 0.5658
scene0140 00 0.5781 0.7134 0.3422 0.4249 0.2985 0.3718
scene0200 00 0.4767 0.6554 0.4336 0.5452 0.4341 0.5452
scene0347 00 0.5587 0.6516 0.4018 0.5599 0.4467 0.5926
scene0400 00 0.5169 0.6865 0.4066 0.5902 0.4067 0.5902
scene0590 00 0.6052 0.7445 0.4517 0.6253 0.3952 0.5609
scene0645 00 0.4388 0.7269 0.3502 0.6075 0.3416 0.6509

Mean 0.5142 0.6915 0.3814 0.5530 0.3750 0.5438

Table 3. Per-scene performance of open vocabulary 3D object selec-
tion and rendering on Lerf dataset with mIoU and mAcc at different
thresholds.

Scene mIoU ↑ mAcc@0.25 ↑ mAcc@0.5 ↑
figurines 0.5375 0.7679 0.5893
ramen 0.2638 0.4366 0.1972
teatime 0.5855 0.7797 0.6441
waldo kitchen 0.3178 0.5000 0.4091

Mean 0.4262 0.6211 0.4599

the fusion ratio. We also provide per scene evaluation results
on Scannet (Tab. 2) and Lerf dataset (Tab. 3).

B.6. Efficiency
Regarding inference time, storage memory, feature extrac-
tion time, and training memory cost aspects: previous meth-
ods like LangSplat[13] and LEGaussians[14] perform text-
query localization by rendering a 2D compressed language
embedding map, which is then decoded to match the text
query embeddings—this process is slow. In contrast, our
approach and OpenGaussian[15] can directly localize text
queries in 3D by searching the codebook. Additionally, both
LangSplat[13] and LEGaussians[14] need to maintain the
autoencoder decoder network, which requires larger storage
memory. Since our context feature extraction only requires
one additional forward pass of CLIP, we do not introduce
significant additional computation. In our Attention-Driven
Feature Aggregation module, we reuse preloaded multi-view
features, incurring no extra memory cost. All methods are
compatible with the 4090 GPU. Moreover, in previous meth-
ods, the feature extraction process requires running the CLIP
model on each segmentation crop at each granularity level,

which is very time-consuming. Our context-aware feature ex-
traction module can be downgraded to solely global feature
extraction, which significantly improves efficiency while sac-
rificing very little accuracy, as shown in our ablation results.
Therefore, our proposed method can achieve substantial im-
provements without a decrease in efficiency.
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