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Supplementary Material

In this supplementary document, we provide additional
materials to supplement our main submission. The code

is available here for research purposes: github.com/
jzr99/DNF-Avatar

6. Implementation Details

6.1. Final Objectives

In addition to the losses introduced in our manuscript, we
also adapt the following loss during distillation. The final
loss is a linear combination of the losses with the corre-
sponding weights.
Material Smoothness Loss. We regularize the intrinsic
properties {r,m,a} via a bilateral smoothness term[15],
which prevents the material properties from changing dras-
tically in areas with smooth colors:

Lsmooth = →↑Is (R, ↓) → exp
(
↔
∥∥∥↑Igtrgb

∥∥∥
)
, (22)

where Is (R, ↓) are rasterized material maps. ↓ denotes
{r,m,a}. Igtrgb represents ground truth images.
Anisotropy Regularization Loss. We adopt the loss from
[74] for 2DGS:

Laniso =
1

N

N∑

i=1

max {max (ssi ) /min (ssi ) , r}↔ r, (23)

where ssi is the scaling of 2DGS. This loss constrains the
ratio between the length of two axes of 2DGS that to not
exceed predefined value r. We set r = 3 to prevent the
Gaussian primitives from becoming threadlike, which alle-
viates the geometric artifacts under novel poses.
Normal Orientation Loss. Ideally, normals of visible 2D
Gaussian primitives should always face toward the camera.
To enforce this, we employ the normal orientation loss [67]:

Lorient =
1

|R|
∑

r→R
→max (↔ωo,r · Is(r,ns

o), 0)→1 , (24)

where ωo,r denotes the outgoing light direction (surface to
camera) for ray r. Is(r,ns

o) denotes the rasterized world-
space normal for ray r.
Environment Map Distillation Loss. In addition to the
distillation loss between the two avatar representations, we
also regularize the environment map of our student model
with the one of our teacher model:

Lenv
distill =

1

|S2|
∑

ω→S2

∥∥Lt
e(ω)↔ Ls

e(ω)
∥∥
2
, (25)

where Lt
e denotes a spherical-gaussian-based environment

map from our teacher model, and Ls
e represents a cubemap-

based environment map from our student model. S2 is all
possible lighting directions.
Depth Distortion and Normal Consistency. Following
2DGS[23], we apply the depth distortion loss and normal
consistency loss to concentrate the weight distribution along
the rays and make the 2D splats locally align with the actual
surfaces:

Ldist =
1

|R|
∑

r→R

N∑

i,j

wi(r)wj(r) →zi(r)↔ zj(r)→1 , (26)

Lnc =
1

|R|
∑

r→R

N∑

i

wi(r)(1↔ n↭
i N(r)), (27)

where wi(r) = oiĜi(u(r))
∏i↑1

j=1

(
1↔ oj Ĝj(u(r))

)
is the

blending weight for ith 2D splat along the ray r, and zi is
the depth of the intersection point. N is the normal derived
from the depth map.

6.2. Training Details

The teacher model is trained first and then frozen during
distillation. We apply the marching cube algorithm to ex-
tract the mesh from the implicit teacher model and initialize
the 2DGS with a sampled subset from the vertexes of the
mesh. Similar to [82], during distillation, we periodically
densify and prune the 2DGS with the initial sampled vertex
to regularize the density of the 2DGS. Following IA [71],
we employ a two-stage training strategy during distillation.
We train a total of 30k iterations with distillation loss ap-
plied. We apply a color MLP [57] to estimate the radiance
in the first 20k iterations, while we employ both color MLP
and PBR rendering loss for the rest of the iterations. Note
that the color MLP is only used during training, which helps
regularize the geometry of the Gaussians. As for the pre-
computation of occlusion probes, we separate the human
avatar into 9 parts based on the skinning weights, and pre-
compute the part-wise occlusion probes after the first 20k
iterations.

During rendering, we adopt the standard gamma correc-
tion to the rendered image from linear RGB space to sRGB
space and then clip it to [0, 1]. To stay consistent with
R4D [9] and IA [71], we calibrate our albedo prediction
to the range [0.03, 0.8], which prevents the model from pre-
dicting zero albedo for near-black clothes.
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7. Additional Experimental Results

7.1. Metrics

For synthetic datasets, we assess several metrics:
Relighting PSNR/SSIM/LPIPS: We evaluate standard

image quality metrics for images rendered under novel
poses and illumination conditions.

FPS: We report the rendering frame rate per second for
the 540↗ 540 resolution images on a single NVIDIA RTX
4090 GPU.

Normal Error: This metric measures the error (in
degrees) between the predicted normal images and the
ground-truth normal images.

Albedo PSNR/SSIM/LPIPS: We use standard image
quality metrics to evaluate albedos rendered from training
views. Since there is inherent ambiguity between the es-
timated albedo and light intensity, we align the predicted
albedo with the ground truth, following [85].

For real-world datasets, i.e. PeopleSnapshot, we provide
qualitative results, showcasing novel views and pose syn-
thesis under new lighting conditions.

7.2. Additional Qualitative Results

We show additional qualitative relighting results on the Peo-
pleSnapshot dataset in Fig. 9. All of the subjects are ren-
dered under novel poses and novel illuminations.

7.3. Additional Quantitative Results

The per-subject and average metrics of R4D, IA, Ours-D,
and Ours-F are reported in Tab. 6. Note that the only differ-
ence between Ours-D and Ours-F is in the inference stage,
so they share the same intrinsic properties.

7.4. Additional Ablation Study for Distillation

As shown in Tab. 4, we ablate the proposed distillation ob-
jectives on subject 01 of the RANA dataset. dist., i-dist., and
p-dist. represent distillation, image-based distillation, and
point-based distillation, respectively. When distillation is
disabled, 2DGS itself cannot produce satisfying geometry,
leading to poor relighting results. While image-based distil-
lation successfully distills the knowledge from the training
view, point-based distillation further improves the perfor-
mance by distilling knowledge in both visible and occluded
areas. We also note that the bias from the implicit teach
model (smooth interpolation of density and color in regions
not seen during training) helps reducing artifacts in our stu-
dent model. We compare our model with a pure explicit
3DGS-based avatar model [57] and show that such explicit
representation struggles to generalize to out-of-distribution
joint angles, while our model achieves reasonable results,
thanks to the smoothness bias distilled from the teacher
model (Fig. 7).

Method Normal ↘ Relighting

PSNR ≃ SSIM ≃ LPIPS ↘
R4D [9] 33.61 ↓ 18.22 0.8425 0.1612
IA [71] 12.05 ↓ 18.48 0.8859 0.1219

w/o dist. 16.49 ↓ 18.99 0.8739 0.1488
w/o i-dist. 14.55 ↓ 19.30 0.8889 0.1392
w/o p-dist. 11.56 ↓ 19.42 0.8835 0.1374
w/o dist. avatar 11.50 ↓ 19.47 0.8878 0.1332
Ours 11.41

↓
19.48 0.8884 0.1315

Table 4. Quantitative Ablation Studies on RANA. Both objec-
tives for distillation effectively contribute to the final relighting
quality.

7.5. Rendering Speed

Method LBS Occ. Shading Rast. Total

Ours-D 3.3ms 7.7ms 12.1ms 6.9ms 30.0ms
Ours-F 3.3ms 7.7ms 0.9ms 2.9ms 14.8ms

Table 5. Time cost for each part of our model.

As shown in Tab. 5, we test the performance for each
component of our PBR pipeline. The test is done with a
540 ↗ 540 resolution using around 70000 Gaussian primi-
tives. The deferred shading version is bounded by the shad-
ing time, which scales linearly with the number of pixels.
In comparison, for forward shading, the shading module it-
self is very fast, while querying part-wise occlusion probes
becomes the bottleneck of performance. The bottleneck of
part-wise occlusion probes is governed by the number of
Gaussian primitives. In addition, we assume the environ-
ment map remains unchanged for a single animation se-
quence so that the precomputation time (around 10ms per
environment map) for the Equ. (10) and Equ. (11) is ig-
nored. However, our forward shading pipeline can still
achieve around 40 FPS, even if we take this precomputa-
tion into account.

8. Additional Discussion

8.1. Clarification for Part-wise Occlusion

Ambient occlusion is calculated on the fly during anima-
tion. The idea is that each body part is rigid, and thus we
can pre-compute its occlusion probes in canonical space of
each part. The pre-convolution (Eq. (9)) ensures that a sin-
gle query is sufficient to obtain ambient occlusion at test
time. For a single Gaussian in observation space, we trans-
form it to the canonical space of Np body parts according
to per-part rigid transforms. By querying partwise ambient
occlusion probes in canonical space, we obtain Np ambient
occlusion values, and the product of these values is the fi-
nal ambient occlusion (Eq. (16)). We also present Fig. 8,
where intra-part occlusion (calculated when Gaussian was
transformed to the canonical space of its own part) captures
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Figure 7. Implicit bias helps pose generalization. Under limited
training pose variation, the bias imposed by our implicit teacher
model helps our student model to achieve reasonable rendering on
out-of-distribution poses (left). In comparison, the state-of-the-art
3DGS-based avatar model [57] tends to fail on out-of-distribution
poses, especially around joints (right).

Intra-part occ. Inter+intra-part occ. Inter+intra-part occ.Intra-part occ.

Figure 8. Visualization of intra/inter-part occlusion.

the shadow of the wrinkle and local geometry, while inter-
part occlusion (calculated when Gaussian was transformed
to the canonical space of other parts) models e.g., shadow
cast by the body onto the inner side of the arm. Posed body
geometry can be used with Monte Carlo (MC) ray-tracing to
compute shadows but it’s not real-time. Our pre-computed
part-wise occlusion probes avoid MC ray-tracing, enabling
real-time rendering.

8.2. Worse Albedo but Better Relighting Results

The ground-truth dataset and the teacher model both em-
ploy MC ray tracing. If we use a large loss to enforce
the albedo from the teacher to the student, the final re-
lighting results will be suboptimal since split-sum is an ap-
proximation to ray-tracing. Hence, we use a small weight

for albedo distillation, which serves more like a regulariza-
tion to make sure the student does not produce unreason-
able albedos. Our albedos are thus optimized for split-sum
and are not consistent with the ground-truth, which employs
ray-tracing. On the other hand, our learned normals are less
noisy than the teacher, while split-sum does not suffer from
MC noise. These factors combined give us a better relight-
ing result.

9. Limitations and Societal Impact Discussion

The final quality of our approach largely depends on the
stability of the teacher model. Currently, the teacher
model [71] requires accurate body pose estimation and fore-
ground segmentation, which may not be the case for in-the-
wild captures. Combining existing state-of-the-art in-the-
wild avatar models [17, 29, 43] with our efficient relightable
model is an interesting direction for future work.

Furthermore, the ambient occlusion assumption in our
method may not hold in the presence of strong point lights.
In such cases, the shading model may not be able to capture
the correct shadowing effects. Also, similar to other state-
of-the-art models [42, 71, 76], our model can only handle
direct illumination at inference time. Modeling global illu-
mination effects while still achieving real-time performance
is an active area of research in both computer graphics and
computer vision.

Moreover, our current per-scene optimization-based
pipeline remains slow during training. Similar to other
state-of-the-art feed-forward dynamic reconstruction meth-
ods [30, 35, 73], a promising future direction is to learn
a data-driven prior for intrinsic property decomposition,
enabling a feed-forward approach for animatable and re-
lightable avatar reconstruction.

Regarding the societal impact, our work can be used to
create realistic avatars for virtual reality, gaming, and so-
cial media. However, it is important to consider the ethical
implications of using such technology. For example, our
method can be used to create deepfakes, which can be used
to spread misinformation. It is important to develop meth-
ods to detect deepfakes and educate the public about the
existence of such technology.
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Figure 9. Qualitative Relighting on PeopleSnapshot Dataset.



Subject Method Albedo Normal Relighting (Novel Pose)

PSNR ≃ SSIM ≃ LPIPS ↘ Error ↘ PSNR ≃ SSIM ≃ LPIPS ↘

Subject 01

R4D 20.04 0.8525 0.2079 33.61 ↓ 18.22 0.8425 0.1612
IA 24.11 0.8679 0.1827 12.05 ↓ 18.48 0.8859 0.1219

Ours-D 23.90 0.8580 0.1834 11.41
↓ 19.42 0.8905 0.1252

Ours-F 19.48 0.8884 0.1315

Subject 02

R4D 12.13 0.7690 0.2599 28.34 ↓ 14.38 0.8128 0.1787
IA 20.94 0.8892 0.1854 9.29 ↓ 19.08 0.8812 0.1323

Ours-D 20.76 0.8773 0.1675 9.04
↓ 19.86 0.8875 0.1285

Ours-F 20.03 0.8891 0.1297

Subject 05

R4D 19.74 0.8151 0.2488 26.14 ↓ 17.72 0.8469 0.1780
IA 22.24 0.8591 0.2071 9.52 ↓ 17.47 0.8769 0.1453

Ours-D 22.26 0.8527 0.1798 9.07
↓ 18.89 0.8876 0.1377

Ours-F 18.97 0.8873 0.1411

Subject 06

R4D 21.57 0.7992 0.2177 25.83 ↓ 17.54 0.8866 0.1636
IA 22.94 0.8233 0.1928 8.89 ↓ 18.14 0.8932 0.1271

Ours-D 22.91 0.8163 0.1752 9.03
↓ 18.67 0.8960 0.1289

Ours-F 18.72 0.8953 0.1341

Subject 33

R4D 18.35 0.8426 0.1887 25.24 ↓ 16.78 0.8173 0.1859
IA 21.67 0.8703 0.1351 9.52 ↓ 18.03 0.8426 0.1366

Ours-D 21.18 0.8450 0.1544 8.92
↓ 19.13 0.8546 0.1331

Ours-F 19.23 0.8557 0.1332

Subject 36

R4D 23.80 0.9100 0.1611 24.76 ↓ 17.05 0.8574 0.1707
IA 24.88 0.8900 0.1324 9.22 ↓ 17.46 0.8726 0.1284

Ours-D 24.43 0.8785 0.1384 9.27
↓ 18.18 0.8764 0.1293

Ours-F 18.26 0.8773 0.1389

Subject 46

R4D 18.13 0.8777 0.1238 33.27 ↓ 16.30 0.8338 0.1649
IA 22.47 0.9391 0.0725 10.69 ↓ 17.08 0.8406 0.1000

Ours-D 22.36 0.9298 0.0793 10.25
↓ 17.47 0.8415 0.1039

Ours-F 17.62 0.8426 0.1041

Subject 48

R4D 12.10 0.7370 0.2264 21.84 ↓ 14.98 0.7985 0.1776
IA 23.36 0.9137 0.1857 10.49 ↓ 19.70 0.8849 0.1313

Ours-D 23.39 0.9034 0.1707 9.62
↓ 19.82 0.8808 0.1329

Ours-F 19.97 0.8816 0.1328

Average

R4D* 18.23 0.8254 0.2043 27.38 ↓ 16.62 0.8370 0.1726
IA 22.83 0.8816 0.1617 9.96 ↓ 18.18 0.8722 0.1279

Ours-D 22.65 0.8701 0.1561 9.58

↓ 18.93 0.8769 0.1275

Ours-F 19.04 0.8772 0.1307

Table 6. Per-Subject Metrics on the RANA dataset.
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