A. Additional implementation details

During training of MambaMatcher in Tab. 1, we use an effective batch size of 80 by distributing 10 batches to 8 RTX 3090 GPUs. For
other comparison and ablative experiments, we run the experiments on a ’small’ subset of SPair-71k, which is around 20% the size of the
original SPair-71k dataset [39], with varying effective sizes across 2 GPUs. The batch sizes vary because different feature and correlation
aggregation schemes required different amount of VRAM. For example, when using FastFormer [53], only 3 batches could fit into a single
GPU when training.

Details of soft sampler (Sec. 4.3. Given a source keypoint ks = (zr,, yx, ), we define a soft sampler Whs ¢ REXW:

max (0,7 — v/(zk, — 5)% + (yr, — 1)?)

W (4, j) = 7
Ei’j’ max(0, T — \/(xké — 72+ (yk, — )?)

10)

where 7 is a distance threshold from the keypoint, and Zij Wk (i,7) = 1. The role of the soft sampler is to sample each transferred

keypoint P (%, j) by assigning weights which are inversely proportional to the distance to the keypoint k. We can obtain sub-pixel accurate
keypoint matches as follows:

ki= > PGLHWHG)). (n
(4,j)EHXW
We use 7 = 0.1 for training, and 7 = 0.05 for inference.

Experimental environment. All experiments are run on a machine with an Intel(R) Xeon(R) Gold 6242 CPU, with up to 8 GeForce RTX
3090 GPUs.

B. Additional details of baseline methods

We provide the details of each baseline approach (shown in Table 1 of the main manuscript) in Table 6, which was omitted due to spatial
constraints.

Table 6. Additional details of baseline methods.

Method Feature backbone  Supervision Data augmentation
DHPF, CHM, MMNet, PWarpC-NCNet, NeMF, SCorrSAN ResNet101 kp-pair X
TransforMatcher, CATs++, HCCNet, UFC ResNet101 kp-pair W)
DIFT SD2.1 None X
DINO + SDero-shot DINOv2, SD1.5 None X
DINO + SDgypervised DINOv2, SD1.5 kp-pair X
Diffusion Hyperfeatures SD1.5 None X
Hedlin et al. [15] SD1.4 None X
SD4Match SD2.1 kp-pair X
MambaMatcher DINOv2 kp-pair o

C. Effect of positional encoding

Currently, we do not explicitly encode the potential spatial relationships between correlation elements during the sorting and processing
steps. While spatial relationships are important, our primary goal is to resolve ambiguities by focusing on the most significant correspon-
dences first. Prioritizing high-similarity scores enables the model to establish a strong contextual foundation. Nonetheless, we experiment
the effect of fixed 4D sinusoidal encoding and learnable positional embedding to further analyze the effect of explicitly encoding spatial
relationships in Table 7, where it can be seen that there is no clear visible improvement in performance with the integration of sinusoidal or
learned positional embeddings. Investigating more sophisticated methods to integrate spatial context could potentially enhance the model’s
ability to capture inter-image relationships.

D. Feature backbone / Data augmentation comparison

We provide the results of MambaMatcher when using varying backbones, with or without data augmentation, on SPair-71k for a fairer
comparison in Table 8. Noting that PCK@0.05/0.10 for TransforMatcher [20] are 32.4/53.7 with data augmentation, these results show
that the similarity-aware selective scan shows enhanced efficacy over multiple layers of additive attention (FastFormers [53]).
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Table 7. Effect of using 4D sinusoidal positional encoding.

Method PCK @ 0.05 PCK @ 0.10 PCK @ 0.15
Ours 61.6 77.8 84.3
Ours with Sinusoidal P.E. 61.2 77.8 84.2
Ours with Learnable P.E. 61.5 77.6 84.5

Table 8. PCK of MambaMatcher on SPair-71k when using varying feature backbones and data augmentation. We follow the data
augmentation scheme used in CATs [5] and TransforMatcher [20]

Backbone  Dataaug. PCK@0.05 PCK@(.10 PCK@0.15

ResNet101 X 38.2 533 61.3
ResNet101 o 41.0 58.5 67.4
DINOv2 X 579 74.6 81.8
DINOv2 o 61.6 71.8 84.3

E. Statistical significance of performance gap in comparison to FastFormers

We conduct 3 repeated experiments with varying seeds to report the mean and variance of PCK results on the *small” subset of SPair-71k
in Table 9. While the performance gain is not dramatic, MambaMatcher offers advantages in terms of computational overhead (memory,
latency) as previously shown in Table 10.

Table 9. PCK results on SPair-71K over multiple runs We report the results when using FastFormers in comparison to our similarity-
aware selective scan as the correlation aggregation. The experiments were conducted 3 times - the mean and standard variation across the
runs are reported. It can be seen that our scheme consistently yields better performances across PCK thresholds.

Method PCK@0.05 PCK@0.10 PCK@0.15

FastFormers [20] (6 layers) 59.9+0.74 76.9+£140 83.94+1.27
Mamba + Similarity-aware Selective Scan (Ours) 60.6 +0.54 78.2+0.76 85.0+0.86

F. Analysis on efficiency of MambaMatcher

For an intuitive overview, we measure module-wise maximum GPU memory usage and latency in Table 10. The values are cumulative
in the order of DINOv2 (feature extraction), feature aggregation, and correlation aggregation. This shows that our design incurs the
lowest latency while using less memory and fewer parameters than FastFormer, demonstrating a favorable balance between computational
overhead and performance'.

Table 10. Memory, Latency and # Params comparison across correlation schemes. Our scheme strikes the most favorable balance
between performance and efficiency.

Module GPU Memory (GB) Latency (ms) # Params
DINOvV2 [43] 0.97 10.3 86.6M
Feature aggregation 1.17 12.3 42.5M
Correlation aggregation

- Conv4Dy—;3 [38] 1.17 41.0 1.3K

- FastFormers [20] (6 layers) 1.67 28.8 26.0K
- Mamba,p + Similarity-aware Selective Scan (Ours) 1.64 16.4 5.1K

G. FLOPs analysis of MambaMatcher

In the Table 11, we report the FLOPs of MambaMatcher using open-source libraries pt f1ops and calflops.

'We report the FLOPs of MambaMatcher in Appendix G.
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Table 11. FLOPs of MambaMatcher measured using open-source libraries.

Module ptflops calflops
DINOv2 [43] 359.32G 358.99G
Feat. agg 245T 245T
Conv4Dy—3 [38] 2.06G 2.06G
FastFormers [20] (6 layers) 43.54G 43.05G
Mamba + Similarity-aware Selective Scan (Ours) 27.54M 3.84G

While FLOPs serve as a standardized measure of computational complexity, we noticed that existing libraries fail to accurately capture
the FLOPs of various modules due to technical complexities, e.g., reliance on operations registered as nn . Modules. Additionally, certain
libraries for measuring FLOPs crash when encountered with hardware-optimized algorithms from xFormers [27], which are used in the
DINOV2 backbone of our method. Consequently, we believe that this measurement may not be entirely fair or representative of the actual
computational overhead and efficiency.

To address this gap, we conduct a theoretical calculation of FLOPs for varying correlation aggregation schemes. We consider an input
with dimensions N x C' = 30" x 16, consistent with MambaMatcher. We assume the same dimensions for the input and output i.e.,

C= Cin = Coul~

4D convolution, kernel size 3.
2 x N X Cip x Cou X k* = 33.6 GFLOPs

Vanilla dot-product attention. Assuming single head, QKV dim = 16.
QKYV projection: 3 x (2 X N X Ciy X Cour)

Dot-product: 2 x (N? x C)

Softmax: 3 x (N?)

Weighted sum of V: 2 x (N?) x C

Total = 44.0 TFLOPs

FastFormers (Additive attention). Assuming single head, QKV dim = 16.
QKY projection: 3 x (2 X N X Ciy X Cour)

Softmax and weighted sum: 2 X (3 X N +2 x N x C)

Global vector addition: 2 x (N x C')

Projection: 2 x N x C? Total = 1.74 GFLOPs

Mamba: selective state-space machines. Hyperparameters following MambaMatcher.
Input projection: 2 x 2 X N X Cin X Clnner

1D convolution: 2 X Cinner X k X Clnner

Projection to A, B, dt: 2 X N X Cinnertimes(2 X dmodgel + 1)

Selective scan: 9 X N X diodel X state

Element-wise multiplication: N X Cinner

Output projection: 2 X N X Clpner timesCin

Total FLOPs = 23.1 GFLOPs

QOurs: Selective state-space machines with Similarity-aware Selective Scan. Same as above, but additional sorting overhead. Assuming
each comparison and swap operation involves approximately 4 FLOPs:
Sorting: 4 X (NlogN) = 0.064GFLOPs
Total FLOPs = 23.2 GFLOPs

Note that the above values ignore many details, including activation, normalization, residual connections, or actual number of aggre-
gation layers used. The above theoretical calculation serve to provide a vague estimate of FLOPs for each scheme. However, we suggest
that the number of FLOPs does not directly translate to computational overhead in learning-based methods, as many variables such as
parallelism, hardware optimization, and intermediate representations directly impact GPU memory usage and latency.

H. Generalizability of MambaMatcher

Trained on PF-PASCAL, evaluated on PF-WILLOW. We present the results of MambaMatcher on the PF-WILLOW [13] dataset. The
PF-WILLOW dataset contains 900 image pairs for testing only and is evaluated using the model trained on the PF-PASCAL dataset. The
results are illustrated in Table 12, where it can be seen that while MambaMatcher performs competitively, it does not outperform existing
methods. This is unlike our results on the PF-PASCAL and SPair-71k datasets (Table 1), where MambaMatcher outperforms all existing
benchmarks. This may be attributed to supervised training, which causes the feature and correlation aggregation layers to be trained
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specifically for the training domain. Another possibility is that the Mamba layer lacks generalizability to unseen domains compared to
other methods built on convolutional or attention-based layers.

Table 12. Results of MambaMatcher on the PF-WILLOW dataset. We perform competitively with existing methods, but do not
outperform all existing methods unlike on PF-PASCAL or SPair-71k.

PF-WILLOW

Method @ Qphox @ Qlbbox-kp

0.05 0.10 0.05 0.10
DHPF [2020] 49.5 71.6 - 71.0
CHM [2021] 5277 794 - 69.6
CATs++ [2022] 56.7 812 47.0 726
PWarpC-NCNet [2022] - - 48.0 76.2
TransforMatcher [2022] - 76.0 - 65.3
NeMF [2022] - - 60.8 75.0
SCorrSAN [2022] 54.1 80.0 - -
HCCNet [2024] - 74.5 - 65.5
UFC [2023] 58.6 812 504 742
DIFT [2023] 58.1 81.2 448 68.0
DINO+SD er0-shot [2024] - - - -
DINO+SDy,, [2024] - - - -
Diffusion Hyperfeatures [2024] - 78.0 - -
Hedlin et al. [15] 53.0 84.3 - -
SD4Match [2023] - - 52.1 804
Ours 56.2 81.1 474 72.1

Trained on SPair-71k, evaluated on PF-PASCAL. While we provide the generalization performance of MambaMatcher on the PF-
WILLOW dataset in Table 12, we report additional generalization results in Table 13. Results on PF-PASCAL were trained on SPair-71k,
and vice versa. The results indicate that while the generalizability of MambaMatcher is not state-of-the-art, it generalizes competitively with
other state-of-the-art methods in certain cases, such as being trained on PF-PASCAL and tested on SPair-71k. While domain generalization
is advantageous, we suggest that a lack of cross-dataset generalization does not diminish the overall significance of our method. If large-
scale datasets for semantic correspondence become available, this problem is likely to be alleviated significantly for all semantic matching
methods.

Table 13. PCK on SPair-71k after being trained on PF-PASCAL.

Model PCK@0.05 PCK@0.10 PCK@0.15
CATs [5] 13.6 27.0 -
TransforMatcher [20] - 30.1 -
SD4Match [30] 27.2 40.9 -
MambaMatcher (Ours) 26.5 40.9 49.1

I. Comparison on the DINOv2 layers used

We show the comparative experiments on the layers if DINOv2 used in this work to validate our use of layers 4-11. The experiments
were carried out on the ’small’ set of SPair-71k. The results in Tab. 14 shows that better features can be obtained across the depths of the
DINOV2 backbone, with the 11th layer token features exhibiting the best performance. Tab. 15 aims to choose the best combination of
layers to extract the feature maps from. While the PCK performance improves gracefully as more layers are used, we choose to use layers
4-11 as the performance improvement beyond that becomes diminishing, and using layers 4-11 provides us with a favorable compromise
between memory usage (around 70% memory usage compared to using all 0-11 layers) and PCK performance.
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Table 14. Comparison between different layers of the DINOv2 Table 15. Comparison between different layers combinations

backbone. of the DINOv2 backbone.
SPair-71k (s) SPair-71k (s)
Layers used @timg Layers used @i,

0.05 0.10 0.15 0.05 0.10 0.15
0 0.9 3.8 8.2 11 252 431 557
1 1.5 53 112 10-11 29.2 464 56.8
2 1.7 6.1 122 9-11 289 46.7 58.0
3 42 11.1 18.8 8-11 29.6 474 583
4 73 16.1 24.6 7-11 304 48.5 588
5 102 20.6 29.8 6-11 30.8 48.4 58.7
6 13.1 23.6 31.8 5-11 309 484 58.6
7 17.5 29.8 39.0 4-11 30.8 48.6 59.0
8 20.7 352 457 3-11 31.0 48.7 59.0
9 239 403 515 2-11 312 48.9 58.7
10 252 425 541 1-11 314 48.9 588
11 252 43.1 557 0-11 314 489 58.7

J. Comparison on the layers used for sorting

Currently, when performing multi-level correlation aggregation via the Similarity-Aware Selective Scan, we sort the correlation sequence
based on the similarity scores from the final correlation map (the 2L-th level, Sec. 4.2). We compare the results when using a different
standard for sorting the correlation sequence in Tab. 16, where we show that our current configuration of using the 2 L-th level demonstrates
the best results.

Table 16. Effect of using different configurations for sorting the correlation sequence.

Method PCK @ 0.05 PCK @0.10 PCK @ 0.15
Last layer (2L-th, Ours) 61.6 77.8 84.3
Penultimate-layer (2L-1th) 61.0 77.7 84.2
Mean across layers 60.9 76.6 83.8

K. PCK per image v.s. PCK per point

While it is conventional to calculate the mean PCK per image (sum of image-wise PCK averaged over the number of images) when reporting
the PCK results, some methods confuse this concept with PCK per point (sum of pair-wise PCK averaged over the number of point pairs).
Tab. 17 shows the results, where it can be seen that MambaMatcher evaluated using PCK-per-point (denoted as MambaMatcher*) yields
higher values in comparison.

L. PCK per category

We present the category-wise PCK in Tab. 18, where it can be seen that MambaMatcher yields the best results overall.

M. Potential when using larger resolutions

In Table 19, we report the GPU memory / latency usage when using different correlation aggregation module at varying image resolutions
(thus, varying feature and correlation map resolutions). Note that the memory usage is cumulative i.e., maximum GPU memory usage
during the forward run. It can be seen that our similarity-aware selective scan incurs consistently lower GPU memory usage and latency
compared to FastFormers. Most notably, the difference in latency is dramatic; the hardware optimizations of Mamba enables the similarity-
aware selective scan to be performed with only a small increase in latency even when the image sizes become significantly larger. This
further justifies our usage of Mamba, given larger image inputs i.e., consequently, longer correlation sequences.

We report the performance of MambaMatcher on a different set of image resolutions in Table 20. It shows that while using larger image
resolutions does result in improved PCK results, there are diminishing returns as the image resolutions becomes larger.
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Table 17. Results of MambaMatcher on PF-PASCAL and SPair-71k datasets. MambaMatcher outperforms existing baselines on both
datasets. MambaMatcher * denotes PCK-per-point metrics, which outperforms MambaMatcher. This shows that PCK-per-point yields
higher results in comparison to PCK-per-image.

PF-PASCAL SPair-71k time  memory
Method Image res. @ timg @ (ppox (ms) (GB)
0.05 0.10 0.15 0.05 0.10 0.15

DHPF [2020] 240x240 7577 90.7 95.0 209 373 475 58 1.6
CHM [2021] 240x240 80.1 91.6 949 272 463 575 54 1.6
MMNet [2021] 224x320 77.6 89.1 94.3 - 40.9 - 86 -
PWarpC-NCNet [2022] 400x400 79.2 921 956 31.6 52.0 618 - -
TransforMatcher [2022] 240x240 80.8 91.8 - 324 53.7 - 54 1.6
NeMF [2022] 512x512 80.6 93.6 - 342 53.6 - 8500 6.3
SCorrSAN [2022] 256x256 81.5 933 - - 55.3 - 28 1.5
HCCNet [2024] 240x240 80.2 924 - 35.8 54.8 - 30 2.0
CATs++ [2022] 512x512 849 938 96.8 40.7 59.8 68.5 - -
UFC [2023] 512x512 88.0 948 979 485 644 721 - -
DIFT [2023] 768 x768 694 84.6 88.1 39.7 529 - - -
DINO+SD,¢ro-shot [2024] 8402 /5122 73.0 86.1 91.1 - 64.0 - - -
DINO+SDg,, [2024] 8402 /5122 809 936 969 - 746 - - -
Diffusion Hyperfeatures [2024] 224 x224 - 86.7 - - 64.6 - 6620 -

Hedlin et al. [15] 0.93 xori. - - - 289 454 - 90k < -
SD4Match [2023] 768 x768 844 952 975 595 755 - - -
MambaMatcher (Ours) 420x420 873 959 98.2 61.6 778 84.3 74 2.1
MambaMatcher * (Ours) 420x420 87.6 96.0 98.2 633 79.2 85.6 74 2.1

Table 18. Category-wise PCK on the SPair-71k dataset.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
DINOV2 [2023] 69.9 589 868 369 434 426 393 702 375 690 637 689 551 650 333 578 512 312 539
DIFT [2023] 612 532 795 312 453 398 333 778 347 700 515 572 506 414 519 460 676 595 529
SD+DINO [2024] 714 591 873 381 513 433 402 772 423 754 632 688 560 661 528 594 630 551 593
NCNet [2018] 179 122 321 117 290 199 161 392 99 239 188 157 174 159 148 96 242 311 201
PMNC [2021] 541 359 749 365 421 488 400 726 211 676 581 505 400 541 433 357 745 599 504
TransforMatcher [2022]  59.2 393 730 412 525 663 554 671 261 671 566 532 450 399 421 353 752 686 537
SCorrSAN [2022] 57.1 403 783 381 518 578 471 679 252 713 639 493 453 498 488 403 777 697 553
SD4Match [2023] 753 674 857 647 629 866 765 826 648 867 730 789 709 783 668 648 915 866 755

MambaMatcher (Ours) 829 61.0 919 610 627 899 838 899 606 867 812 816 73.7 79.5 70.0 715 93.0 864 718

Table 19. Efficiency comparison when using larger image resolutions.

Image res. Feature res. Correlation agg. GPU memory (GB) latency (ms)

420 30 Ours 1.64 16.4
420 30 FastFormer 1.67 28.8
560 40 Ours 3.25 16.6
560 40 FastFormer 3.16 28.9
700 50 Ours 6.47 17.7
700 50 FastFormer 6.27 55.6

N. Additional visualizations of refined correlation map

We provide additional visualizations of refined correlations in Fig. 7 and Fig. 8. Fig. 3 demonstrates that our refined correlation map
can better localize keypoints - Fig. 7 and Fig. 8 aim to provide a deeper insight into this phenomenon. In Fig. 7 and Fig. 8, the top-
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Table 20. PCK results on SPair-71k when using varying image resolutions.

Image res. Feature res. Correlationres. PCK @ 0.05 PCK @ 0.10 PCK @ 0.15

238 172 174 26.4 39.7 46.5
420 302 304 61.6 77.8 84.3
840 602 60* 64.2 78.4 85.2

left images represent an image pair with a ground truth correspondence. The top-right image visualizes the output correlation map from
MambaMatcher. This visualization helps illustrate that during the final prediction of C using linear projection, the wrong maps are
effectively disregarded, and the accurate maps are primarily weighted for aggregation, resulting in our final accurate correlation map.

0. Correlation robustness analysis

We aim to provide insights into how the model’s correlation refinement process depends on high-confidence correspondences, by replacing
the top-k% of the correlation scores with zeros in Fig. 9. It shows that the higher the k, i.e., more high-confidence correlation values are
removed, the localization performance degrades more. This evidences that the correlation refinement process relies heavily on the strongest
initial correspondences to produce accurate final predictions.

P. Cumulative contribution analysis of each correlation state

In Fig. 10, we visualize the cumulative contribution analysis of each correlation state, i.e., each entry of the correlation sequence, depending
on how we order the correlation sequence. We use integrated gradients to compute attribution weights for each correlation token, in order
to reveal how quickly the model accumulates useful evidence when tokens are ordered by different criteria. The cumulative curves show
the proportion of total attribution mass accumulated as a function of token fraction, with Area Under Curve (AUC) metrics quantifying
concentration efficiency. Higher AUC values indicate that important evidence is concentrated in fewer tokens, while lower values suggest
more distributed attribution. This visualization illustrates that traversing the tokens in the descending order of correlation scores achieves
higher concentration of useful evidence compared to ascending or random orderings, demonstrating that our refinement process effectively
leverages high-confidence initial correspondences.

Q. Additional qualitative results

We provide additional qualitative results in Fig. 11.
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Source Target GT

Figure 7. Additional visualization of similarity-aware selective scan of MambaMatcher. (First row) Source and target images with GT
keypoints shown in red, and our final correlation tensor. (First block of 4x4) The pre-refinement correlation maps, per channel. (Second
block of 4x4) The post-refinement correlation maps, per channel. As observed, after refinement, each correlation map is refined to be either
perfectly wrong, i.e., high attention everywhere other than the GT position, or accurately reflecting the keypoint position. This visualization
helps illustrate that during the final prediction of Cc using linear projection, the wrong maps are effectively disregarded, and the accurate
maps are primarily weighted for aggregation, resulting in our final accurate correlation map.
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Source Target GT Final

Figure 8. Additional visualization of similarity-aware selective scan of MambaMatcher. (First row) Source and target images with GT
keypoints shown in red, and our final correlation tensor. (First block of 4x4) The pre-refinement correlation maps, per channel. (Second
block of 4x4) The post-refinement correlation maps, per channel. As observed, after refinement, each correlation map is refined to be either
perfectly wrong, i.e., high attention everywhere other than the GT position, or accurately reflecting the keypoint position. This visualization
helps illustrate that during the final prediction of C using linear projection, the wrong maps are effectively disregarded, and the accurate
maps are primarily weighted for aggregation, resulting in our final accurate correlation map.
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Source GT Target GT Full Correlation Removed Top 5% Removed Top 10% Removed Top 15%

..

Figure 9. Correlation robustness analysis. The first two columns show the source and target images with a GT keypoint pair, followed by
the results of our refinement after removing 0% (ours), 5%, 10%, and 15% of the entries with the highest correlation scores. It can be seen
that the localization of target keypoint degrades when the top-k% of the correlation scores are replaced with zeros, showing progressively
worse localization with higher k. This evidences that establishing a strong and reliable contextual foundation based on accurate matches
(i.e., highest correlation score) yields strong benefits to the correlation refinement process.
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80%

90%

0.0 0.2 0.4 0.6 0.8

1.0

Figure 10. Cumulative attribution analysis. The visualization presents three panels for each keypoint: Source - Target - Cumulative
Curves. We use integrated gradients to compute attribution weights for each correlation token, in order to reveal how quickly the model
accumulates useful evidence when tokens are ordered by different criteria. The cumulative curves show the proportion of total attribution
mass accumulated as a function of token fraction, with Area Under Curve (AUC) metrics quantifying concentration efficiency. Higher
AUC values indicate that important evidence is concentrated in fewer tokens, while lower values suggest more distributed attribution.
This visualization illustrates that traversing the tokens in the descending order of correlation scores achieves higher concentration of
useful evidence compared to ascending or random orderings, demonstrating that the model’s refinement process effectively leverages high-

confidence initial correspondences.
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Figure 11. Additional qualitative results of MambaMatcher. Best viewed on electronics, when zoomed-in. The left two columns
visualize the ground-truth correspondences. The third column visualizes the predicted target keypoints, and its deviation from the GT
keypoints.
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