
Tuning-Free Multi-Event Long Video Generation

via Synchronized Coupled Sampling

Supplementary Material

A. Foundational concepts and derivations

A.1. Further details on preliminaries

This section provides additional details on the preliminaries
introduced in Section 2 to further guide the readers.
Diffusion models. Diffusion models are generative models
that learn to gradually transform a noise sample from a
tractable noise distribution towards a target data distribution.
This transformation is consisting of two processes: a forward
process and a reverse process. In the forward process, noise
is incrementally added to the data sample over a sequence of
timestep t, leading to a gradual loss of structure in the data.
This forward process is defined as following:

xt =
p
↵̄tx0 +

p
1� ↵̄t✏ (4)

where ↵̄t is a pre-defined coefficient that regulates noise
schedule over time, and ✏ ⇠ N (0, I) denotes a noise sam-
pled from a standard normal distribution. The reverse diffu-
sion process aims to invert the forward process, gradually
removing the noise and recovering the original target data
distribution. This reverse transformation is modeled using
a neural network (referred to as the diffusion model, ✏�),
which is trained using a loss function based on denoising
score matching [17, 44]. The loss function is defined as:

Ldiff(�;x) = Et,✏⇠N (0,I)

⇥
w(t)k✏�(xt; t)� ✏k22

⇤
, (5)

where w(t) is a weighting function applied to each
timestep t, and t ⇠ U(0, 1) is drawn from a uniform dis-
tribution.
Score distillation sampling. Score distillation sampling
(SDS) [35] introduces a new way to optimize any arbitrary
differentiable parametric function g using diffusion models
as a critic by posing generative sampling as an optimization
problem. The flexibility of SDS in optimizing diverse differ-
entiable operators has made it a versatile tool for visual tasks.
Specifically, given x = g(✓), the gradient of the diffusion
loss function of Equation 5 with respect to the parameter ✓
is expressed as below:

r✓LSDS(�;x = g(✓))

�
= Et,✏


w(t) (✏��(xt; c, t)� ✏)

@✏��(xt; c, t)

@x
@x
@✓

� (6)

In DreamFusion [35], it has been shown that by omitting
the Jacobian term of the U-Net (the middle term) in Equa-
tion 6 yields an effective gradient for estimating an update

direction that follows the score function of diffusion mod-
els, thereby moving towards a higher-density region. The
simplified expression is given as Equation 2 in Section 2.
Collaborative score distillation sampling. The original
SDS method considers only a single sample, x, during
the optimization process. Collaborative Score Distillation
(CSD) [22] extends SDS to enable inter-sample consistency
by synchronizing gradient updates across multiple samples,
{x(i)}N

i=1. Specifically, CSD generalizes SDS by using Stein
Variational Gradient Descent (SVGD) [26] to align gradient
directions across multiple samples as Equation 3 in Section 2.
For a positive definite kernel, k, in Equation 3, CSD employs
the standard Radial Basis Function (RBF) kernel. This ap-
proach ensures that each parameter update is influenced by
other samples with scores adjusted via importance weights
based on sample affinity, thereby effectively promoting inter-
sample consistency during optimization.

A.2. SynCoS with different diffusion models

In this paper, we present our method using diffusion models
with ✏-prediction networks for clarity. However, our frame-
work is compatible with any T2V denoising model. To il-
lustrate this, we describe how applying our framework to
different diffusion settings.
Flow-based models. Recently, rectified flow [25], a unified
ODE-based framework for generative modeling, introduces
a simplified denoising process that optimizes the trajectories
in diffusion space to be as straight as possible. Given a
data sample x from the data distribution and a noise sample
✏ from a Gaussian distribution, rectified flow defines the
forward process as:

xt = t✏+ (1� t)x0, t 2 [0, 1] (7)

Accordingly, the reverse process is governed by an ODE
that maps ✏ to x0:

dxt = v(xt; t)dt, t 2 [0, 1] (8)

where v is a velocity field estimated by a learnable neural
network �, where the model is trained using the following
objective:

Lflow(�;x) = Et,✏

⇥
w(t)k(✏� x0)� v(xt; t)k22

⇤
. (9)

Score distillation with flow-based models. While SDS and
CSD have been implemented on denoising diffusion mod-
els with ✏-prediction networks, the core concept of score
distillation—using diffusion models as generative priors for



I would like you to act as a sentence separator, breaking down long sentences into a global prompt and a specified number of concise local prompts based on action 
verbs. The long sentence will be referred to as the "Scenario" and divided into a given number of short sentences, or "Local Prompts," based on the "Number of 
Prompts."

First, consider the context of the long sentence, replacing any pronouns with specific nouns mentioned in the sentence, using an indefinite article if necessary.

Next, break the modified long sentence into the specified number of local prompts, focusing on the main action verbs. Please follow these rules:

1. Each set should consist of one global prompt that is shared across all local prompts, along with the specified number of local prompts.
2. The global prompt should describe the shared properties across all the local prompts.
3. The global prompt must provide detailed, concise descriptions for the shared entity to avoid vagueness, enhancing clarity and context for the local prompts.
4. Each local prompt should include the global prompt.
5. Each local prompt should focus on only one action verb. The tense and form of these verbs must match the original long sentence.
6. Each local prompt should be self-contained, following the structure of subject, verb, and background.
7. Each local prompt should include all relevant background information linked to the main action verb.
8. No other verbs should be included apart from the specified main action verbs.
9. Avoid redundancy between the global prompt and local prompts; the global prompt should not contain the main actions described in the local prompts.
10.The tense of the local prompts (present, present progressive, or present participle) must align with the original long sentence.

From this point onward, I will provide prompts for you to rephrase according to these rules. The prompts may sometimes be simple, with minimal description for the 
entity or background. Feel free to enhance the details as needed to improve video quality.

Example:

Global prompt: An adorable kawaii cheeseball on the moon, smiling, 3D render, octane, soft lighting, dreamy bokeh, light sparkles floating in the background.

Local prompt 1: An adorable kawaii cheeseball on the moon, smiling, 3D render, octane, soft lighting, dreamy bokeh, light sparkles floating in the background. 
The cheeseball wiggles slightly, its rounded shape catching the soft light as it shimmers.

Local prompt 2: An adorable kawaii cheeseball on the moon, smiling, 3D render, octane, soft lighting, dreamy bokeh, light sparkles floating in the background. 
A soft sparkle lands on the cheeseball's surface, making it blush a gentle pink, adding to its cuteness.

Local prompt 3: An adorable kawaii cheeseball on the moon, smiling, 3D render, octane, soft lighting, dreamy bokeh, light sparkles floating in the background. 
The cheeseball's eyes blink slowly, a soft reflection of the stars above shimmering in them.

Local prompt 4: An adorable kawaii cheeseball on the moon, smiling, 3D render, octane, soft lighting, dreamy bokeh, light sparkles floating in the background. 
The cheeseball hops slightly on the moon's surface, leaving a tiny imprint in the soft, glowing moon dust.

Figure 8. Instruction for generating structured prompt. This instruction follows the guidelines to create individual local prompts and a
shared global prompt based on a scenario and the number of prompts the user gives.

optimization—can also be extended to flow-based models.
Below, we derive the equation for score distillation adapted
to flow-based models. By computing the gradient of the train-
ing objective Lflow for flow-based models, �, with respect
to ✓, the score distillation sampling adapted to flow-based
models can be expressed as:

r✓iLFlow�SDS(�,x = g(✓))

�
= E✏,t


w(t) (v�(xt, t)� (✏� x))

@x
@✓

�
.

(10)

Here, w(t) is a time-dependent weighting function, and
v� is estimated by the pre-trained flow-based denoising
network �. In accordance with SDS conventions, the (trans-
former) Jacobian term is omitted to enhance computational
efficiency, enabling the optimization of x using the rectified
flow model. This loss is then could be reinterpreted within
the Collaborative Score Distillation (CSD) framework [22],
allowing for synchronous updates across multiple samples
instead of treating each gradient independently.

B. Experimental details

Details of structured prompt. The structured prompt is de-
signed to divide a cohesive story (i.e., scenario) into multiple
prompts, enabling the generation of long videos controlled
by distinct prompts. It consists of a single global prompt that
describes shared properties across all local prompts (e.g.,

object appearances or styles) and distinct local prompts that
specify changes in objects, motions, or styles. To create a
structured prompt, we leverage a Large Language Model
(LLM), as in previous works [31]. The process involves in-
structing the LLM to segment a given scenario into multiple
local prompts and a detailed global prompt, as illustrated in
Figure 8. We use GPT-4o [32] to generate these structured
prompts, ensuring consistency across all experiments. These
structured prompts are applied in all experiments, including
the main evaluations of our method and the baselines, as
well as in ablation studies, ensuring a fair comparison.

To extensively verify our method under various challeng-
ing scenarios, we consider both previously established sce-
narios [21, 29, 31, 36, 47, 50] and our new, more challeng-
ing scenarios, including: background changes, object motion
changes, camera movements, compositional generation, com-
plex scene transitions, cinematic effects, physical transfor-
mation, and storytelling. We experiment with 48 structured
prompt scenarios, including 11 with two local prompts, 12
with three, and 25 with four, extending video length by a
factor of four or five. Full lists are provided on our project
page: https://syncos2025.github.io/

Implementation details of the main experiments. DDIM
sampling was performed with 50 steps, setting DDIM ⌘ to 0.
The stride s is set to 4 for CogVideoX-2B and 6 for Open-

https://syncos2025.github.io/


Table 3. Quantitative ablations study of the three coupled stages in SynCoS, omitting each stage during one-timestep denoising,
demonstrates the importance of all three stages for coherent long video generation with multiple events.

Temporal Quality Frame-wise Quality Semantics

Stage Subject Background Motion Dynamic Num Aesthetic Imaging Glb Prompt Loc Prompt
Backbone 1 2 3 Consistency " Consistency " Smoothness " Degree " Scenes # Quality " Quality " Fidelity " Fidelity "

M
3 7 3 80.46% 91.14% 98.55% 97.92% 1.229 53.36% 58.42% 0.318 0.348

7 3 7 78.88% 91.63% 97.70% 14.58% 21.33 45.56% 42.27% 0.305 0.300

3 3 3 82.70% 91.85% 98.24% 100.00% 1.042 54.56% 65.53% 0.325 0.348

1st chunk

Local 1 The sky is deep orange Local 2 The sky is purple 

2nd chunk

Local 3 The city glows under the night sky

3rd chunk

0 sec 15 sec10 sec5 sec

Global prompt  The whole beautiful view of the city is shown. The setting sun casts a warm glow, with light reflecting off buildings, creating a serene and picturesque scene. 

C
SD ⋯ ⋯

Sy
nC
os
(O
ur
s)

⋯ ⋯

⋯ ⋯

G
en
-L
-V
id
eo

Figure 9. Qualitative visualization of the ablation study on the three coupled stages of SynCoS. All examples in the second box are 3
times longer in duration compared to the underlying base model.

Sora Plan (v1.3). In second stage, we set tmin 2 [800, 900],
learning rate, lr 2 [0.5, 1] using AdamW Optimizer [28],
and iters 2 [20, 50]. The scale of the classifier-free guid-
ance is set to 6 for CogVideoX-2B and 7.5 for Open-Sora
Plan (v1.3). For Gen-L-Video, we use the same strides and
guidance scale as in our experiments. For FIFO-Diffusion,
we set n = 4 for the number of partitions in latent partition-
ing and lookahead denoising, following their best parameter
configurations.

Measurements of computation time. We measure the com-
putation time required to generate a 4⇥ longer video com-
pared to the underlying base model of CogVideoX-2B, using
a single H100 80GB GPU (Table 4), including both main
baselines and our approach. Although our method takes
1.38⇥ longer than the baselines, this overhead remains com-
parable while delivering substantial gains in quality and
consistency, leading to superior quantitative and qualitative
performance. With a multi-GPU implementation, the runtime
can be further reduced to 3.9 minutes. In addition, the com-
putation cost can be flexibly tuned based on video scenarios
and synchronization requirements—for instance, reducing
the number of iterations in the second-stage optimization
lowers runtime.

C. Additional ablations

Effect of the three coupled stage. In addition to Section 3
and Figure 4, we provide further quantitative evaluations (Ta-

Table 4. Measurements and comparisons of computation time on
CogVideoX-2B.

Gen-L-Video [50] FIFO [21] SynCoS (Ours)

21 min. 21 min. 29 min.

ble 3) and qualitative visualizations (Figure 9) by skipping
each stage in SynCoS to assess the efficacy of its three-stage
process in generating high-quality multi-event long videos.

As discussed in Section 3.1, omitting the first stage in
SynCoS, which corresponds to temporal co-denoising with
DDIM (i.e., Gen-L-Video), causes denoising paths across
chunks to diverge, leading to overlapping artifacts, as shown
in Figure 4. This results in reduced temporal consistency and
frame-wise quality, as quantified in Table 3, due to abrupt
changes. Additionally, this variant often struggles to faith-
fully follow prompts, as the simple fusion of denoising paths
dilutes prompt guidance unique to each chunk. This issue is
evident in the second example of a city transition (Figure 9),
where the scene fails to properly reflect changes in glowing,
particularly in the third chunk.

Conversely, relying solely on the second stage, corre-
sponding to temporal co-denoising with CSD, degrades im-
age quality significantly. As shown in Figure 4 and Figure 9,
the video exhibits noise-like artifacts, leading to a severe
loss of frame-wise quality and prompt fidelity, as quanti-
fied in Table 3. While this approach integrates information
across local and distant video frames, it does not produce



high-quality long videos, as the resulting video suffers from
low image quality, completely failing for high-quality long
video generation.

In contrast, SynCoS effectively couples both stages, lever-
aging the output of the first stage as a refining source for the
second stage, which enhances inter-sample long-range con-
sistency. This integration enables high-quality, long video
generation with multiple prompts, achieving smooth transi-
tions, semantic consistency throughout the video, and strong
prompt fidelity for each chunk.
Ablation study on stride. By default, we set the stride (step
size between chunks) to 4 for CogVideoX-2B without ex-
tensive tuning for each scenario. For prompts with frequent
content changes, reducing the stride improves long-term con-
sistency by increasing information sharing across overlaps.
Users can adjust the stride to balance vibrant changes (larger
stride) and stronger synchronization (smaller stride), enhanc-
ing content consistency. Figure 10 provides qualitative evi-
dence: while a stride of 4 introduces slight variations in the
knight’s appearance, a stride of 1 ensures greater consistency
throughout.

(a) stride=1

(b) stride=4
Figure 10. Qualitative ablation study on stride. Reducing the
stride enhances content consistency, which is beneficial in scenarios
like a knight running as the background transitions from grass to
snow.

Although reducing the stride increases computation time
slightly—from 55 minutes (Table 4) to 60 minutes—the
impact is minimal. This is because stride reduction does
not affect the second stage optimization time, where most
of the computational overhead occurs. Instead of process-
ing all chunks simultaneously in this stage, SynCoS uses a
minibatch approach, randomly selecting B chunks from the
total N chunks at each iteration. Since B remains the same
for both stride 1 and stride 4, the overall optimization cost
remains largely unaffected.



1st chunk

0 sec 30 sec15 sec

Local 1 The astronaut snowboards down a snowy hill

Global prompt  An astronaut in a white uniform, equipped with a helmet and gear.

3rd chunk2nd chunk

FI
FO

Local 2 The astronaut surfs in the sea Local 3 The astronaut surfs across desert dunes

Sy
nC
oS
(O
ur
s)

(a) Long video generation on CogVideoX-2B, where a single video chunk consists of 26 frames.

1st chunk

0 sec 20 sec10 sec

Local 1 The astronaut snowboards down a snowy hill

Global prompt  An astronaut in a white uniform, equipped with a helmet and gear.

3rd chunk2nd chunk

FI
FO

Sy
nC
oS
(O
ur
s)

Local 2 The astronaut surfs in the sea Local 3 The astronaut surfs across desert dunes

(b) Long video generation on Open-Sora Plan (v1.3), where a single video chunk consists of 49 frames.

Figure 11. Long video generation results. All generated videos are 4 times longer than the underlying base model. FIFO significantly
suffers from noise-like artifacts on Open-Sora Plan (v1.3) due to inevitable training-inference discrepancy in their design.

0 sec 30 sec15 sec

Global prompt  A panda sitting on a wooden stole is playing an acoustic guitar. The background includes a flowing stream and vibrant green foliage. 

Fr
ee
N
oi
se

Figure 12. Long video generation result of FreeNoise on CogVideoX-2B. This generated video is 4 times longer than the underlying base
model. Each frame is generated well in the early frames, where no fusion is applied. However, as soon as the fusion of attentional features is
applied, the generated video shows stagnant results of repeated object motion without any scene changes, eventually leading to the entire
failure of video generation.

⋯

Sy
nC

oS
(O

ur
s)

Prompt 1 A cute brown squirrel is in the icy environment of Antarctica, perched on a pile of hazelnuts. Prompt  2 Alongside it is a cute white squirrel, and the two sit together on the pile of nuts.

⋯I2
V 

(A
ut

or
eg

re
ss

iv
e)

Sy
nC

oS
(O

ur
s)

I2
V 

(A
ut

or
eg

re
ss

iv
e)

Prompt 2 A Chihuahua wearing an astronaut is swimming in the ocean. Prompt  3 A Chihuahua is swims alongside colorful fish.

⋯ ⋯

Prompt 1 A Chihuahua wearing an astronaut floats in space.

⋯ ⋯

Figure 13. Qualitative comparison with autoregressive generation using image-to-video (I2V) model for long videos. While autoregressive
generation with I2V models effectively handles scene transitions, it often struggles to introduce new components into the video.



D. Further discussions on previous work

D.1. Limitations of previous approaches

Following the recent success of T2V models, several works
have explored extending video diffusion models for longer
video generation without additional training. However, we
observe that current tuning-free approaches often exhibit
undesirable artifacts when applied to recent video diffusion
models. In the following sections, we will detail the limita-
tions and failures of these existing methods.

Discussion on FIFO-Diffusion. In video diffusion models,
all frames within a single video chunk are processed at the
same timestep during both training and inference. FIFO-
diffusion [21] proposes a new sampling technique that uses
a queue to store a series of consecutive frames, with the
timestep increasing for each frame. While this approach en-
ables the generation of infinitely long videos, it introduces
avoidable discrepancies between the timesteps used during
training and those used during inference. These discrepan-
cies become more pronounced when applied to recent video
diffusion models. This is because as the number of frames
processed within a single chunk increases, the timestep gap
between frames in the same chunk widens. For example,
FIFO-diffusion is not susceptible to per-frame artifacts on
CogVideoX-2B [55], which encodes 13 frames per chunk.
However, in Open-Sora Plan (v1.3) [23], which encodes 24
frames per chunk, these artifacts become significantly more
noticeable, as shown in Figure 12. We note that in contrast to
existing tuning-free long video generation methods, SynCoS
does not introduce training-inference discrepancy and can
be seamlessly applied to any video diffusion model.

Discussion on FreeNoise. The video diffusion models as-
is often lack the capability to maintain content consistency
across different video chunks beyond a single video chunk.
FreeNoise [36] addresses this limitation by fusing attention
features from temporal layers to establish long-range tempo-
ral correlations between different chunks. While this method
works effectively with earlier video diffusion models that
separate spatial and temporal attention layers (i.e., enabling
the fusion of only temporal attention features), we observe
that it is not applicable to newer video diffusion models,
as illustrated in Figure 12. This limitation arises because
recent DiT-based models, widely used in frontier T2V ap-
proaches [23, 55], lack dedicated temporal layers. Instead,
these models tokenize an entire video chunk into patches
and apply attention across all patches. As a result, fusing all
attention features without additional considerations severely
degrades performance, demonstrating that naive fusion tech-
niques are unsuitable for DiT-based models in long video
generation.

D.2. Additional comparisons with

architecture-specific approaches

In our main experiment (Section 5), we primarily compare
SynCoS with architecture-compatible, tuning-free methods
for multi-event long video generation. These approaches re-
main compatible with newer diffusion models, leveraging
backbone improvements for enhanced generation quality.
However, several existing methods [5, 29, 36, 45] are re-
stricted to specific diffusion backbones, making them incom-
patible with newer or alternative models and limiting their
performance to existing architectures.

Nonetheless, to ensure a comprehensive and fair com-
parison, we implement SynCoS using the respective archi-
tectures of existing tuning-free methods and evaluate its
performance in Table 5. We compare SynCoS with Video-
Infinity [45] and FreeNoise [36] by applying SynCoS to
VideoCrafter2 [52], a U-Net-based video diffusion model.
Additionally, to compare against DitCtrl [5] (built on Multi-
Modal Diffusion Transformer (MM-DiT)), we evaluate Syn-
CoS under the same backbone of CogVideoX-2B [55].

Notably, SynCoS significantly outperforms all baselines
in temporal consistency and video quality while achieving
comparable prompt fidelity, demonstrating its robustness
across various diffusion backbones.

Table 5. Quantitative comparison with architecture-specific

baselines. *Abbreviations: subject consistency (SC), background
consistency (BC), aesthetic quality (AQ), and prompt fidelity (PF).

Temporal Frame Semantics

Backbone Method SC " BC " AQ " PF "

VideoCrafter2 [52]
Video-Infinity [45] 0.879 0.943 0.645 0.365

FreeNoise [36] 0.904 0.946 0.650 0.356

SynCoS 0.911 0.947 0.648 0.365

CogVideoX-2B [55]
DitCtrl [5] 0.821 0.916 0.635 0.394

SynCoS 0.864 0.927 0.643 0.381

These results are qualitatively supported by Figures 14
and 15, where SynCoS achieves both coherent astronaut
appearance and the highest prompt fidelity.

Comparisons with autoregressive generation using I2V.

Long videos can also be generated using image-to-video
(I2V) models by generating a single video chunk with T2V
and then conditioning the last frame of the previous chunk to
the I2V model. For two reasons, we do not directly include
autoregressive generation using the I2V model in the main
paper. First, using an I2V model requires a different prompt
structure. Unlike our structured prompts, which focus on de-
scribing changes in local chunks, I2V models require explicit
descriptions of transitions between chunks. For example, to
generate an artistic video of a butterfly on a flower across
changing seasons, our structured prompts might include: (1)
“In spring, a butterfly is on a flower,” and (2) “In summer,
a butterfly is on a flower.” In contrast, I2V prompts would
need to explicitly describe transitions, such as: (1) “In spring,
a butterfly is on a flower,” and (2) “The season changes from



spring to summer, and the butterfly is on a flower.” Second,
the base models used in our experiments do not support I2V
generation.

Nonetheless, to comprehensively analyze long video gen-
eration, we compare SynCoS with an I2V model (CogVideo-
5X-I2V) that uses a backbone supporting I2V generation
and appropriately tuned prompts. As shown in Figure 13,
I2V-based autoregressive generation enables smooth scene
transitions (e.g., a Chihuahua floating in space transitioning
to the Chihuahua swimming in the ocean). However, it often
struggles to introduce new objects (e.g., a brown squirrel
and a white squirrel, or a Chihuahua with fish), limiting its
ability to generate long videos that naturally add or change
components over time.

D.3. Longer video generation results and compari-

son with PA-VDM

SynCoS can generate 1-minute single-event and 2-minute
multi-event videos without any quality degradation (Fig-
ure 16 and Figure 17). In Figure 16, the training-based PA-
VDM [54], limited to single-event, shows temporal quality
degradation and noticeable subject drift. In contrast, our
tuning-free framework maintains consistent character ap-
pearance and visual quality throughout the entire sequence.

D.4. Single-event long video generation

We present 4⇥ longer single-event video generation results
in Table 6 using the same prompts as those used in the base-
lines. Our method consistently outperforms baselines. We
will also include qualitative examples in the final manuscript
to further support these results.
Table 6. Quantitative comparisons of single-event long video

generations on CogVideoX-2B. *Abbreviations: subject consis-
tency (SC), background consistency (BC), aesthetic quality (AQ),
and prompt fidelity (PF)

Temporal Frame Semantics

Method SC " BC " AQ " PF "

Gen-L-Video 0.897 0.941 0.623 0.388

FIFO 0.874 0.922 0.604 0.383

SynCoS 0.927 0.951 0.633 0.388



Di
TC

trl
Sy

nC
oS

Astronaut snowboarding down a snowy hill The astronaut surfs in the sea The astronaut surfs over desert dunes

Figure 14. Qualitative comparison with DiTCtrl on CogVideoX.

Vi
de

o-
In

fin
ity

Sy
nC

oS

Astronaut is in a spacecraft The astronaut takes off from Earth The astronaut lands on Mars

Fr
ee

No
ise

Figure 15. Qualitative comparisons on VideoCrafter2.

PA
-V

DM
Sy

nC
oS

A stylish woman walks down a Tokyo street

Figure 16. 1-minute video comparison with PA-VDM.

A woman walking in a city where day and night are different (multi-event: day in Shanghai, evening in Paris and night in New York)

An FPV drone flies over an ancient city (multi-event: changes the appearance of the city as it flies)

Figure 17. 2-minute (3072 frames) videos generated by SynCoS.



E. Pseudo-code implementation of each stage.

We describe each stage with pseudo-code implementations.
In the first stage of temporal co-denoising with DDIM, the
video is divided into overlapping chunks, where each chunk
undergoes a diffusion forward pass and a DDIM update to
compute x(i)

0 . The chunks are then fused to obtain x0
0, as

detailed in Figure 18. In the second stage, the fused x0
0 is

further refined by re-dividing it into overlapping chunks
and applying CSD-based optimization. While we use CSD-
based optimization to enforce global coherence, it differs
from the original CSD, as the second stage is adjusted using
a grounded timestep and a fixed baseline noise, ensuring
synchronous coupling across all three stages. The iterative
refinement process is illustrated in Figure 19. Lastly, the
refined x0

0 from the second stage is converted using base-
line noise to prepare for subsequent steps in the diffusion
pipeline.

F. Additional qualitative results

We consider long videos of multiple events with the follow-
ing challenging scenarios: object motion control, cinematic
effects, storytelling, camera control, background changes,
physical transformations, complex scene transitions, and
compositional generation. For generated videos handling
object motion control and camera control scenes, please re-
fer to Figure 1, and other video examples are visualized in
Figure 20 and Figure 21. To view all generated videos, refer
to our project page: https://syncos2025.github.io/.

https://syncos2025.github.io/


1 def first_stage(
2 videos , # video tensor of shape [T, C, H, W]
3 prompt_embeds_for_chunks , # Text prompt embeddings for each chunk
4 model , # The denoising model
5 scheduler , # Scheduler to refine videos
6 guidance_scale , # Scale factor for classifier -free guidance
7 timestep , # Current timestep in the diffusion process
8 stride # Stride size for dividing videos
9 ):

10

11 # Initialize list to store video chunks and count tensor
12 videos_for_chunks = []
13 count = torch.zeros_like(videos)
14

15 # Split videos into strides for diffusion forward
16 for start in range(0, videos.shape[0], stride):
17 # Determine the end of the current stride
18 end = start + stride
19

20 # Slice the videos for the current stride
21 chunks = videos[start:end]
22

23 # Increment count for the covered range
24 count[start:end] += 1
25

26 # Append the current stride to the list for processing
27 videos_for_chunks.append(chunks)
28

29 # Concatenate all processed video chunks into a single tensor for inference
30 videos_for_chunks_input = torch.cat(videos_for_chunks , dim=0)
31

32 # Diffusion forward
33 noise_pred = predict_noise(model , videos_for_chunks_input , prompt_embeds_for_chunks , timestep)
34

35 # Apply classifier -free guidance to refine noise predictions
36 noise_pred = apply_classifier_free_guidance(noise_pred , guidance_scale)
37

38 # Perform a scheduler step to update videos and extract the denoised sample
39 res = scheduler_step(scheduler , noise_pred , timestep , videos_for_chunks)
40 videos_x0 = res.pred_original_sample
41

42 # Initialize the aggregated result tensor
43 value_x0 = torch.zeros_like(videos)
44

45 # Aggregate the results into �value_x0 �
46 idx = 0
47 for start in range(0, videos.shape[0], stride):
48 # Define the range for the current stride
49 start + stride
50

51 # Accumulate the processed values for the corresponding stride
52 value_x0[start:end] += videos_x0[idx]
53 idx += 1
54

55 # Compute the final denoised prediction by fusing
56 # Wherever �count > 0�, compute the averaged value , else fallback to �value_x0 �
57 pred_original_sample = torch.where(count > 0, value_x0 / count , value_x0)
58

59 return pred_original_sample

Figure 18. Pseudo-code implementation of the first stage of SynCoS.



1 def second_stage(
2 pred_original_sample , # Initial video prediction
3 prompt_embeds_for_chunks , # Text prompt embeddings for each chunk
4 timestep , # A grounded timestep
5 cfg_scale , # Guidance scale for classifier -free guidance
6 opt # Optimization hyperparameters and options
7 ):
8

9

10 # Initialize target predictions with gradients enabled
11 tgt_pred_sample = pred_original_sample.clone().detach ()
12 tgt_pred_sample.requires_grad = True
13

14 # Optimization hyperparameters
15 lr = opt.lr
16 wd = opt.wd
17 decay_iter = opt.decay_iter
18 decay_rate = opt.decay_rate
19 num_steps = opt.num_steps
20 batch_size = opt.batch_size
21 stride = opt.stride
22

23 # Initialize optimizer and learning rate scheduler
24 optimizer = opt.optimizer ([ tgt_pred_sample], lr=lr, weight_decay=wd)
25 scheduler = opt.scheduler(optimizer , step_size=decay_iter , gamma=decay_rate)
26

27 # Fix baseline noise for the entire tensor
28 base_noise_all = torch.randn_like(tgt_pred_sample)
29

30 for step in range(num_steps):
31 optimizer.zero_grad ()
32

33 # Initialize tensors for counting and score accumulation
34 count = torch.zeros_like(tgt_pred_sample , dtype=tgt_pred_sample.dtype)
35 score_value = torch.zeros_like(tgt_pred_sample , dtype=tgt_pred_sample.dtype)
36

37 # Initialize lists to store videos and noise chunks
38 videos_for_chunks = []
39 basenoise_chunks = []
40 prompt_embeds_chunks = []
41

42 # Determine valid subset indices for this iteration
43 num_chunks = (tgt_pred_sample.shape [0] + stride - 1) // stride
44 subset_indices = torch.randperm(num_chunks)[: batch_size]
45

46 # Process selected chunks
47 for i, start in enumerate(range(0, tgt_pred_sample.shape[0], stride)):
48 if i not in subset_indices:
49 continue
50

51 # Determine the end of the current stride
52 end = start + stride
53

54 # Slice the videos for the current stride and add noise
55 chunks = tgt_pred_sample[start:end]
56 noisy_chunks = add_noise(chunks , base_noise_all[start:end], timestep)
57

58 basenoise_chunks.append(base_noise_all[start:end]. unsqueeze (0))
59 prompt_embeds_chunks.append(prompt_embeds_for_chunks[i])
60

61 # Update count and append to chunks list
62 count[start:end] += 1
63 videos_for_chunks.append(noisy_chunks.unsqueeze (0))
64

65 # Concatenate videos for model inference
66 videos_for_chunks_input = torch.cat(videos_for_chunks , dim=0)
67 basenoise_chunks = torch.cat(basenoise_chunks , dim=0)
68 prompt_embeds_chunks = torch.cat(prompt_embeds_chunks , dim =0)
69

70 # Predict noise using the model
71 noise_pred = predict_noise(opt.model , videos_for_chunks_input , prompt_embeds_chunks , timestep)
72

73 # Apply classifier -free guidance
74 noise_pred = apply_classifier_free_guidance(noise_pred , cfg_scale)
75

76 # Compute CSD scores
77 scores = calculate_csd_loss(videos_for_chunks_input , noise_pred , basenoise_chunks)
78

79 # Aggregate scores back to the appropriate positions
80 for i, start in enumerate(range(0, tgt_pred_sample.shape[0], stride)):
81 if i not in subset_indices:
82 continue
83

84 # Determine the end of the current stride
85 end = start + stride
86

87 # Accumulate scores for the current range
88 score_value[start:end] += scores[start:end]
89

90 # Compute gradients using scores normalized by count
91 grad_all = torch.where(count > 0, score_value / count , score_value)
92 tgt_pred_sample.backward(gradient=grad_all)
93

94 # Perform optimization step
95 optimizer.step()
96 scheduler.step()
97

98 # Detach and return the updated target prediction
99 tgt_pred_sample = tgt_pred_sample.clone().detach ().requires_grad_(False)

100

101 return tgt_pred_sample , base_noise_all

Figure 19. Pseudo-code implementation of the second stage of SynCoS.



15 sec0 sec 10 sec5 sec
1st chunk 2nd chunk

Local 1 The figure continues its stride Local 2 Lightning flashes in the background Local 3 Purple smoke emits from the water figure

Global prompt A humanoid figure made entirely of water walks forward

3rd chunk

ڮڮ

10 sec0 sec 5 sec
1st chunk 2nd chunk

Local 1  The rainbow blob bursts with vibrant energy Local 2 An apple emerges from the explosion of rainbow paint

Global prompt  A large blob of splashing rainbow paint explodes in stunning detail, 8k

ڮ

10 sec0 sec 5 sec
1st chunk 2nd chunk

ڮ

Local 1  The astronaut dances energetically Local 2  Colorful fireworks explode in the background

Global prompt  An astronaut dances on Mars

(a) Cinematic effects

20 sec0 sec 15 sec10 sec5 sec
1st chunk 2nd chunk 3rd chunk 4th chunk

⋯ ⋯ ⋯

Local 1 It appears in colorful comic book panels Local 3 DancesLocal 2 Leaps from the comics to the real world Local 4 Sits down and rests

⋯ ⋯ ⋯

1039 210166 329261 485386

Global prompt 1 A cartoon-style bear Global prompt 2 A realistic bear

(b) Storytelling

20 sec0 sec 10 sec
2nd chunk

Local 1 In spring͕�͙ �͕ŽŶ�Ă�blooming flowers Local 2 In summer͕�͙ �͕ŽŶ�Ă�bright flowers Local 3 In autumn͕�͙ �͕ŽŶ�Ă�fading flowers Local 4 In winter͕�͙ �͕ŽŶ�Ă�frosty flowers

Global prompt  A delicate white butterfly sits on a flower

1st chunk 3rd chunk 4sth chunk
10 sec 15 sec

ڮڮ ڮ

15 sec0 sec 10 sec5 sec
1st chunk 2nd chunk

Local 1 The astronaut snowboards down a snowy hill Local 2 The astronaut surfs in the sea Local 3 The astronaut rides across desert dunes like a surfer

Global prompt An astronaut in a white suit with a reflective helmet

3rd chunk

ڮڮ

(c) Background changes

Figure 20. Multi-event long video generation results showcasing challenging scenarios, including cinematic effects, storytelling, and
background changes. Each example is 2-4 times longer in duration compared to the underlying base model, resulting in 11 to 21-second
videos at 24 fps, with a total of 256 to 512 frames.



15 sec0 sec 10 sec5 sec
1st chunk 2nd chunk

ڮ

Local 1  The candle is brightly lit Local 2 Smoke rises gently and the flame flickers Local 3 The candle is extinguished and remains unlit with no flame or light
1039

Global prompt  Closed shot of a candle presented in a dark room. The camera locked down.

3rd chunk

ڮڮ

(d) Physical transformation

20 sec0 sec 10 sec
2nd chunk

Local 1 The Chihuahua floats weightlessly in space Local 2 The Chihuahua dances, playfully stepping Local 3 The Chihuahua swims underwater Local 4 The Chihuahua swims alongside colorful fish

Global prompt  A Chihuahua wearing an astronaut suit

1st chunk 3rd chunk 4sth chunk
10 sec 15 sec

ڮڮ ڮ

20 sec0 sec 10 sec
2nd chunk

Local 1 It paddles gently Local 2  It swims alongside colorful fish Local 3  It nestles among coral reefs Local 4  Large sharks suddenly appears

Global prompt  A fluffy brown teddy bear with soft fur swims underwater in a serene, magical ocean

1st chunk 3rd chunk 4sth chunk
10 sec 15 sec

ڮڮ ڮ

(e) Complex scene transitions

10 sec0 sec 5 sec
1st chunk 2nd chunk

Local 1  The astronaut dances energetically. Local 2  Beside it, a cute white squirrel sits

Global prompt  A cute brown squirrel sits in the vast, icy environment of Antarctica, perched on a pile of hazelnuts

ڮ

10 sec0 sec 5 sec
1st chunk 2nd chunk

Local 1  The knight strides confidently, his armor clinking softly Local 2  Accompanying him is a wise wizard, walking beside him

Global prompt  A brave young knight journeys through a dense forest, the trees towering above as sunlight filters through the leaves

ڮ

(f) Compositional generation

Figure 21. Multi-event long video generation results showcasing challenging scenarios, including physical transformation, complex scene
transitions, and compositional generation. Each example is 2-4 times longer in duration compared to the underlying base model, resulting in
11 to 21-second videos at 24 fps, with a total of 256 to 512 frames.


	Introduction
	Background
	Preliminaries
	Fusion-based tuning-free long video generation

	Key observations
	Local temporal co-denoising with Gen-L-Video
	Global temporal co-denoising with CSD

	Method
	SynCoS: Synchronized Coupled Sampling
	Align denoising paths across three stages for synchronized coupling

	Experiments
	Experimental setup
	Main experiments
	Ablation study

	Related work
	Conclusion
	Foundational concepts and derivations
	Further details on preliminaries
	SynCoS with different diffusion models

	Experimental details
	Additional ablations
	Further discussions on previous work
	Limitations of previous approaches
	Additional comparisons with architecture-specific approaches
	Longer video generation results and comparison with PA-VDM
	Single-event long video generation

	Pseudo-code implementation of each stage.
	Additional qualitative results

