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Supplementary Material

A. Additional ablations and results

Increasing backbone size. Tables 9 and 10 present the per-
formance of DEAR and DEARLi with ConvNeXt-B (CN-Base)
and ConvNeXt-L (CN-Large) backbones on ADE20K and COCO-
Panoptic. These experiments correspond to Figure 6 from the main
manuscript, but are tabulated for easier comparison and reference
for future work. Both DEAR and DEARL. benefit from increased
backbone capacity. We observe this benefit across all data parti-
tions on both datasets. Note that a frozen CN-Large backbone still
enables DEAR and DEARLI to be trained on a single A100-40GB
GPU.

Backbone 1/128  1/64  1/32 1/16 1/8

Method = gj7e (158) (316) (632) (1263) (2526)

DEAR #®CN-B-L2B 277 323 348 38.3 40.6
DEAR #CN-L-L2B 282 343 361 40.0 425

DEARLi #CN-B-L2B 299 346 363 39.0 41.6
DEARLi #CN-L-L2B 316 356 39.6 413 439

Table 9. Panoptic performance (PQ) on ADE20K when increasing
the backbone size. CN-B and CN-L refer to ConvNeXt-Base and
ConvNeXt-Large, respectively. L2B denotes the LAION-2B pre-
training dataset. ¥ represents a frozen backbone.

Backbone 1/512  1/256  1/128  1/64 1/32
Size (232) (463) (925) (1849) (3697)

DEAR #CN-B-L2B 347 386 408 43.0 44.8
DEAR #CON-L-L2B 353 402 43.1 45.6 47.4

Method

DEARLi #CN-B-L2B 388 413 43.1 44.5 46.4
DEARLi #CN-L-L2B 399 432 453 473 48.4

Table 10. Panoptic performance (PQ) on COCO-Panoptic when
increasing the backbone size.

On training stability. Table 11 presents PQ of our method
on ADE20K across three different seeds.  The first row corre-
sponds to the results of the run presented in Tab. 1 of the main
manuscript. The next two rows present additional runs with the
comparable performance. Overall, the experiments exhibit small
variance, which demonstrates the training stability of our method.

Panoptic vs. semantic labels. Table 12 examines the impact
of training labels on the semi-supervised semantic segmentation
performance of our method. The first row repeats performance
of DEAR from the Tab. 3 of the main manuscript. The second row
presents experiments where the same model is retrained with se-
mantic segmentation labels, which requires additional adaptation
to the pseudo-labels generation procedure for the semantic seg-
mentation objective. We observe that the models achieve compa-

Method 1/128 1/64 1/32 1/16 1/8
29.9 34.6 36.3 39.2 41.6
DEARLIi 30.5 34.8 36.5 39.1 42.0
30.7 34.8 36.1 39.5 41.6

304403 34.710.1 36.3+0.2 39.3+t0.2 41.740.2

Table 11. Panoptic performance (PQ) of our final method,
DEARLI, across three different seeds for standard data partitions
of ADE20K. Bolded results correspond to the runs reported in
Tab. 1 of the main manuscript. The last row represents mean 4.

rable performance, which justifies our comparison with previous
methods in Tab. 3 from the main manuscript. This demonstrates
that the influence of the training labels is minimal. Indeed, the se-
mantic segmentation labels significantly outperform the panoptic
labels in the 1/32 experiment, while underperforming at 1/128 and
performing roughly the same in the remaining three experiments.

17128 1/64 1/32 1/16  1/8

Method (158) (316) (632) (1263) (2526)

Backbone

DEAR
DEAR-semseg

36.5 405 428 458 475

% CN-B-L2B 35.8 409 448 452 474

Table 12. Semantic performance (mloU) on different ADE20K
data partitions. DEAR is trained with respect to the standard
panoptic labels as in the main manuscript. In contrast, DEAR-
semseg is trained with respect to the semantic segmentation labels.
Notably, the reported performances are closely comparable.

Semantic segmentaiton ablations. Table 13 presents abla-
tions of DEARLI for semantic segmentation. These models are
identical to those in Tab. 1 of the main manuscript, but evaluated
with standard M2F semantic segmentation inference. The trends
observed are similar to those for panoptic segmentation. DEAR
significantly outperforms the M2F-Lang baseline across all data
partitions, while DEARLI further enhances performance in 4 out
of 5 scenarios. Furthermore, we observe (cf. rows 1 and 2) that our
M2F-Lang baseline in 3 out of 5 scenarios outperforms state-of-
the-art semantic segmentation method SemiVL [22], which proves
that our panoptic baseline is indeed strong.

Method SSL 1/128 1/64 1/32  1/16 118

SemiVL (¢f. Tab.3) # CN-B-L2B v (30.2) (33.3) 363 37.7 407

M2F-Lang FCONB-L2B v 209 301 (37.4) (40.7) (45.4
L + Pens (DEAR) v' 1365 (405 [42.8 458 (475
L + DeWa (DEARLI) v (389 (42.0 (44.3 (45.00 48.1

Table 13. Semantic segmentation ablations (mloU) on ADE20K.



) 1/128 (158) 1/64 (316) 1/32 (632) 1/16 (1263) 1/8 (2526)

Method SSL Backbone mPQ mSQ mRQ  mPQ mSQ mRQ mPQ mSQ mRQ  mPQ mSQ mRQ  mPQ mSQ mRQ
#CN-BINIk 74 327 93 133 522 167 178 627 21.7 221 651 270 255 69.3 30.7

M2F - OCN-B-INIk 93 386 117 150 552 186 205 629 252 250 689 30.5 299 732 359
v OCN-BINIk 164 457 204 228 604 279 278 702 340  30.1 714 366  33.6 75.1 403

~ #CON-BIN21k 97 377 127 144 532 178 208 642 255 258 67.6 31.6  30.1 722 36.1

M2F OCN-BIN21k 112 419 141 167 566 206 233 664 284 279 698 337 329 744 393
OCN-BIN21k 187 465 23.1 263 621 320 309 700 37.1 343 740 412  37.6 77.1 45.

#CN-B-L2B 100 387 124 164 562 20.1 234 654 285 287 695 349 342 737 409

M2F - O CN-B-L2B 129 428 161 193 59.1 239 260 69.1 31.7  31.1 720 377 363 75.6 43.7
v O CN-B-L2B 194 462 240 284 637 346 332 713 402 368 759 443 402 78.8 482

M2F-Lang 117 437 147 191 614 239 263 702 32.1 316 728 383 366 767 44.0
L + Pgys (eval only) - 183 637 233 239 695 300 290 733 354 336 756 408 378 77.6 457
M2F-Lang v $ONBop 183 550 226 264 680 323 325 761 394 355 745 428 392 772 472
L + Pgns (eval only) v s 216 626 267 302 739 37.0 339 762 411 367 77.6 442 402 772 484
L + Pgns (DEAR) v (277) 703 344  (323) 740 39.6 (34.8) 754 42.1  (383) 79.3 462  (40.6) 80.7 48.7
L + DeWa (DEARLi) v/ 29.9) 740 366  (34.6 754 412  (36.3) 77.1 435  (39.2) 803 47.1  (41.6) 80.6 495
M2F-Lang v 183 550 22.6 264 68.0 323 325 761 394 355 745 428 392 772 472
L + Pxs (teacher only) v #CNBLzp 273 687 340 315 729 386 344 745 415 380 782 458 403 792 484
M2F-Lang v s 183 550 22.6 264 680 323 325 761 394 355 745 428 392 772 472
, + DeWa v 205 55.6 251  29.01 711 350 339 756 40.6 369 753 443 408 783 486

Table 14. Extension of Tab. 1 from the main manuscript. The new experiments are shown in gray. Pre-training on ImageNet-21k performs
in between pre-training on ImageNet-1k and LAION-2B [57]. Ensembling with zero-shot CLIP helps more when applied during training
within the teacher (pseudo-labels generation). Decoder warm-up (DeWa) contributes with and without zero-shot CLIP ensembling.

Additional panoptic ablations. Table 14 extends Table |
from the main manuscript. The second section shows experiments
with ImageNet-21k [54] backbone initialization. We observe im-
provements over the ImageNet-1k initialization (cf. first section)
in all setups across all data regimes. Nevertheless, pre-training
on LAION-2B [57] still prevails (c¢f. third section). This con-
firms the benefits of contrastive language-image pretraining with
respect to the traditional pre-training on categorical image-wide
labels. The last section presents additional ablations of our con-
tributions. The second row evaluates DEAR without ensembling
with zero-shot CLIP features during inference, using ensembling
only in the teacher to enhance pseudo-labels. The experiments
reveal that inference-time ensembling brings slight improvement
of 0.3-0.8 PQ points, depending on the data partition. The last
row shows the contribution of the decoder warm-up (DeWa) to the
Mean Teacher baseline. We observe that DeWa consistently im-
proves the performance by 1.4-2.7 PQ points. However, it still
performs significantly worse than DEARLi. These results high-
light the complementary nature of the proposed contributions.

B. SemiVL with a ConvNeXt Backbone

We first successfully reproduced SemiVL [22] experiments with
ViT. Then, we reconfigure SemiVL with a ConvNeXt-B backbone
by introducing several straightforward modifications to the pub-
lished source code. First, new language embeddings are generated
using the appropriate text encoder from OpenCLIP [10]. Second,
the upsampling component of SemiVL is adjusted to align with
the feature dimensions of ConvNeXt at each stage. An extra skip
connection and upsampling block are added to accommodate the
hierarchical structure of convolutional backbones. All other im-
plementation details remain consistent with the ViT-B/16 setup.
SemiVL [22] only fine-tunes the attention weights of the ViT
backbone. Since ConvNeXt lacks a directly analogous mecha-

nism, we freeze the backbone to ensure a direct comparison with
our approach. We also conduct experiments with a fully fine-
tuned ConvNeXt backbone, using the same hyperparameters as de-
scribed in the original paper. In Tables 3 and 5 (main manuscript),
we report experiments with a frozen backbone, while Tables 15
and 16 include additional experiment with a fine-tuned backbone.

1/128 1/64 1/32 1/16 1/8
Method Net (158) (316) (632) (1263) (2526)
SemiVL [22] [Eccvia4) O VIT-B/16 28.1 337 351 372 394
SemiVLT [22] frecvas) % CN-B-L2B 333 37.7 (407
SemiVLT [22] (rccvoe) @ CN-B-L2B  29.5 36.1 (38.3) 40.0
DEAR # CN-B-L2B  (36.5) (40.5) (42.8) (45.8) (47.5)
DEARLI # CN-B-L2B  (38.9) (42.0) (44.3) (45.0) (48.1

Table 15. Comparison with the state of the art in semi-supervised
semantic segmentation on ADE20K. { indicates our experiments
with public source code. Underline denotes CLIP-WiT [52] ini-
tialization. & denotes partial fine-tuning (attention weights only).

1/512 1/256 1/128 1/64  1/32

Method Net (232) (463) (925) (1849) (3697)
SemiVL [22] zccva4) @ VIT-B/16 56.5
SemiVL' [22] Eccvo4) $CN-B-L2B  47.6 49.1 50.1 52.6 529
SemiVL! [22] rccvon O CN-B-L2B 472 473 500 514 526
DEAR #CN-B-L2B  (52.9) (53.9) (56.2) (58.7) (59.3)
DEARLI #CON-B-L2B  (54.6) (55.1) (57.0) (59.1) (60.2

Table 16. Comparison with the state of the art in semi-supervised
semantic segmentation on COCO-Objects. T indicates our experi-
ments with public source code. Underline denotes CLIP-WiT [52]
initialization. @ denotes partial fine-tuning.



These results suggest that SemiVL [22] gains no benefit from
fine-tuning the ConvNeXt backbone. Note that SemiVL [22] re-
ports results from the best checkpoint on the validation set. In
our SemiVL reproduction, we also report results from the best
epoch. As outlined in the main manuscript, all results for DEAR
and DEARLI are obtained by evaluating the checkpoint from the
final training iteration.

C. Limitations

The hyperparameter « for geometric ensembling is manually set to
0.6, which may be suboptimal for different data partitions. From
Tab. 8 in the main manuscript, we observe that higher values of
« increase performance when more labeled data is available. This
suggests that making « adaptive based on the quantity of labeled
data could be beneficial. Additionally, it may be advantageous to
dynamically adjust o during training (e.g., starting with a lower
value early on and increasing it in later stages). These challenges
present opportunities for future research.

D. Further Implementation Details

This section presents implementation details of image perturba-
tions that are presented in Section 4 of the main manuscript.
For color jittering, we use torchvision implementation
with the following parameters: brightness: (0.2, 1.8),
saturation: (0.2, 1.8),contrast: (0.2, 1.8),and
hue: (-0.2, 0.2). Gaussian blur (sigma: (0.1, 2.0))
and CutMix [58, 78] are applied with a probability of 0.5, and
grayscaling with a probability 0.2.

The number of mask queries in Mask2Former [9] is fixed at
200 across all experiments. Models trained without unlabeled data
(supervised) begin with 10k iterations for the smallest data regime
(i.e., 1/128 for ADE20K and 1/512 for COCO), with an additional
10k iterations added for each subsequent regime. The batch size
in these experiments is 8. For the decoder warm-up stage, we
generate class-agnostic pseudo-labels using ViT-Huge SAM [32].

E. Panoptic Segmentation Examples

Figures 7 and 8 show panoptic predictions of our models on
ADE20K and COCO-Panoptic validation images, respectively.
The models are trained on the most challenging data partitions
with the least amount of labeled images. The first two columns
display the input image and the corresponding ground truth. The
next three columns present overlaid panoptic predictions of the
Mean Teacher baseline (M2F+SSL), DEAR and DEARLi. Com-
paring DEAR with the baseline reveals that the recognition en-
hancement often rectifies classification errors (e.g., building to
wall in the 2nd row of Fig. 7, or suitcase to handbag in the 6th
row of Fig. 8). Additionally, a comparison between DEAR and
DEARLI highlights how the localization enhancement refines seg-
mentation boundaries (e.g., chair legs in the third row of Fig. 7).
The last row of Fig. 7 shows an interesting failure mode where
our models isolate parts of the house such as door and windows
into separate segments. While this decision is not entirely wrong,
it deviates from the dataset’s labeling policy which assigns these
classes to indoor scenes only. This illustrates the limitations of

CLIP zero-shot classification, as class text embeddings diverge
from the labeling policy.

F. Comparison with the State of the Art

Figures 9 and 10 compare semantic segmentation predictions of
our method DEAR with the state-of-the-art method SemiVL [22]
on ADE20K and COCO-Objects, respectively. We consider mod-
els trained in most challenging data partitions with the least
amount of labeled data. The columns show the input image,
ground truth, and predictions of SemiVL [22] and DEAR. We ob-
serve that SemiVL occasionally misclassifies correctly segmented
objects (e.g. the third and fifth row in Fig. 9). Furthermore, it
sometimes splits a single object into two different classes (e.g.,
the fourth row in Fig. 9 and the fifth row in Fig. 10). In con-
trast, our model produces fewer misclassifications and more co-
hesive segmentations. We argue this is due to the mask trans-
former framework, which enables zero-shot CLIP classification at
the mask level and delivers more consistent predictions than in the
SemiVL’s patch-level classification approach.



- Image Ground truth M2F+SSL Baseline DEAR DEARLI

Figure 7. Panoptic predictions of the baseline M2F+SSL CN-B-L2B (¢f. Tab. 1 in the main manuscript), DEAR, and DEARLi on few
examples from the ADE20K validation set. All models are trained on the ADE20K 1/128 data partition (i.e., only 158 labeled images).



Ground truth M2F+SSL Baseline

Figure 8. Panoptic predictions of the baseline M2F+SSL CN-B-L2B (cf. Tab. 1 in the main manuscript), DEAR, and DEARLI on few
examples from the COCO-Panoptic val. All models are trained on the COCO-Panoptic 1/512 data partition (i.e., only 232 labeled images).



Ground truth SemiVL [22]

Figure 9. Qualitative comparison of DEAR with the state-of-the-art method SemiVL [22] for semantic segmentation. Models are trained
on the ADE20K 1/128 partition (i.e., 158 labeled images), with predictions visualized on examples from the ADE20K validation set.
Predictions for SemiVL [22] are generated using the publicly released checkpoint.



Ground truth SemiVL [22]

Figure 10. Qualitative comparison of DEAR with the state-of-the-art method SemiVL [22] for semantic segmentation. Models are trained
on the COCO-Objects 1/512 partition (i.e., 232 labeled images), with predictions visualized on examples from the COCO-Objects valida-
tion subset. In COCO-Objects, the background class is represented in black and included in the evaluation. Predictions for SemiVL [22]
are generated using the publicly released checkpoint.



