
A. Calibration Algorithms and Metrics

In this section, we further discuss in detail the various fami-
lies of approaches commonly used to improve and measure
neural network calibration.

A.1. Entropy-based Methods
Entropy-based methods have played an important role in
calibrating deep neural networks, as maximizing the en-
tropy helps penalize overconfident predictions [47, 53, 59].
As mentioned in the main text, naively penalizing all predic-
tions can cause underconfident predictions. While various
works have proposed different approaches in controlling the
entropy term, the Focal Loss [15, 37, 47] and it’s variants
offer adaptive/automated mechanisms in obtaining suitable
values of γ for each sample.

While these automated mechanisms tend to help with ID
calibration, many works fail to acknowledge the importance
of OOD calibration since the parameters obtained during
training/validation may not work during testing [57]. As a
work-around, we find that entropy-based methods can be
extended to include OOD Maximum Entropy constraints
[26, 53] or Dual logit manipulation [67], showcasing the
versatility of entropy-based methods. Since these methods
all share the form of the Focal loss, we can easily pair all of
them together into a single step.

A.2. Regularizers
Mixup is an effective regularization technique that aug-
ments [81] both input features and labels. Mixup works
particularly well on both wider and deeper networks [83]
and can be particularly useful in improving network calibra-
tion [7, 68]. As an extension to vanilla Mixup, RankMixup
[56] can be used to ensure that the augmented samples have
lower confidences than the original samples.

A.3. Margin-based Methods
Margin-based methods tend to restrict model confidences
by a constant margin/factor. For example, label smooth-
ing (LS) [48] softens the targets using a constant factor ϵ.
Mathematically, the smoothed label si is acquired after uni-
formly adjusting the target si = (1−ϵ)yk+ ϵ

K , which is then
used to train the network. Although vanilla LS can be used
to improve miscalibration, imposing a constant smoothing
factor for all training labels can lead to under-confident pre-
dictions. Furthermore, searching for a suitable ϵ is compu-
tationally expensive as it requires a grid-search across mul-
tiple models during the training phase.

Instead of implementing a fixed constant, several works
have been proposed to adaptively or conditionally approxi-
mate the label smoothing function during training. For ex-
ample, MDCA [24] utilizes a regularization term, which en-
forces predicted confidences to be as close to the average

accuracy as possible. This can lead to a parabolic smooth-
ing function [58], that is adaptively dependent on the pre-
dicted confidences. Which can be problematic, since both
high and low confidence predictions are weakly penalized.
Another approach would be to only conditionally smooth
predictions based on a margin. For instance, MBLS [40]
and CALS-ALM [41] propose to restrict output logits by a
user defined margin, but can be sensitive to hyper param-
eter settings. CRL [46] ordinarily ranks predictions based
on the number of times each sample is predicted correctly,
however it requires a buffer to store the correctness history.
Which can be empty during the earlier stages of training and
idle during later phases when the model’s accuracy is high.

Building upon these methods, Adaptive Conditional La-
bel Smoothing (ACLS) [58] aims to dynamically approxi-
mate the label smoothing function.

LACLS =

{
λ1 max(0, hθ

k(x)−mink(h
θ
k(x))−mA)

2 (a)
λ2 max(0, hθ

ŷ(x)− hθ
k(x)−mA)

2 (b)
(15)

For case (a) k = ŷ, the smoothing function is directly pro-
portional to hθ

k(x), thereby lowering confidences. Simi-
larly, when k ̸= ŷ in case (b), the effects of the smooth-
ing function decreases, allowing the logits and confidences
to increase. mA denotes the ACLS margin and λ1, λ2 are
hyperparameters for cases when k = ŷ and k ̸= ŷ.

By adopting a smoothing and indicator function,
the Adaptive Conditional Label Smoothing (ACLS) [58]
method seeks to combing the benefits of both adaptive and
conditional methods without the use of an additional cor-
rectness history.

A.4. Post-hoc Processing
The fundamental idea behind post-hoc processing methods
is to obtain a mapping function/temperature that modifies
the model’s logits thus changing it’s predicted confidence.
The most popular post-processing step is the vanilla tem-
perature scaling (TS) [60], which manipulates the model’s
confidences without changing the final class label predic-
tions. For example, a value of T < 1 leads to a lower en-
tropy or “peaky” distributions and a value of T > 1 gives
higher entropy or “flatter” predictions.

The typical approach in obtaining the temperature pa-
rameter, is to minimize the average calibration error or NLL
over a seperate valdation set. While vanilla TS has been
found to be effective in reducing network over-confidence
[19], it generally reduces the confidence of every sample
- even when predictions are correct. Other forms of post-
hoc processing include calibration using, model ensembles
[82], splines [21] and distribution matching [34, 71]. For
our post-processing step, we use AdaTS since it is the SOTA
method for post-processing methods and adaptively chooses
a samplewise temperature for scaling model predictions.

A.5. Calibration Metrics

Expected Calibration Error (ECE): The ECE is the
most widely used metric in the literature and directly tied
to the definition of calibration [19, 69]. By splitting the pre-
dicted confidences in B evenly separated bins, each con-
taining nb samples. The ECE is then simply a scalar mea-
suring the weighted errors between the acc and conf of each
bin [52]: ECE =

∑B
b=1

nb

N |acc(b) − conf(b)|. Despite the
ECE’s popularity, many recent works have pointed out the
limitations of the ECE, such as bin size sensitivity and it’s
lack of consideration for classwise calibration. For a fair
and thorough analysis, we introduce other calibration met-
rics that cover the weaknesses of the ECE.

Classwise ECE (CECE): As most calibration metrics
typically only considers the max confidence probabilities,
the CECE considers the macro-averaged ECE of all K
classes. Predictions are binned individually for each respec-
tive class and the calibration error is measured for each class
level bin [55]. CECE = 1

K

∑B
b=1

∑K
k=1

nb,k

N |acc(b, k) −
conf(b, k)|.

Overconfidence Error (OE): For safety-critical appli-
cations, overconfident mispredictions are potentially haz-
ardous. The OE penalizes overconfident bins that
have higher confidences than accuracy [68]: OE =∑B

b=1
nb

N

[
conf(b)×max(conf(b)− acc(b), 0)

]
.

Kolmogorov-Smirnov Error (KSE): As many calibra-
tion metrics are often sensitive to the number of B bins
used during the partitioning of empirical distributions. The
KSE[21] is a bin-free alternative that numerically approx-
imates the differences between two empirical cumulative
distributions. The KSE for top-1 classification is given as
the following integral, with zk denoting the predicted prob-
abilities: KSE =

∫ 1

0
|P (k|zk)− zk|P (zk)dzk.

Adaptive ECE (AdaECE: as the ECE is known to be bi-
ased towards higher confidence bins, the AdaECE [54] is
proposed to adaptively/evenly measure samples across bins:
AdaECE =

∑B
b=1

nb

N |acc(b) − conf(b)| s.t. ∀b, i · |Bb| =
|Bi|.

Negative Log-likelihood (NLL): Commonly referred to
as cross entropy in deep learning. The NLL [22] measures
the alignment between a model’s confidence Pi(yk|x) and
targets yk: NLL = − 1

N

∑N
i=1

∑K
k=1 yk logPi(yk|x).

Hyperparameters Values
Learning rate η 0.1

Batch size 512 or 256
Optimizer SGD or Adam
Scheduler Cosine Annealing or Fixed

Epochs 200 or 50
Margin mACLS 6.0

Mixup α 1.0
Mixup margin mMRL 2.0

γ starting 1.0
γ max 20.0
γ min -2.0

No. of bins B 15.0
Learning rate for attention block 3e-4

Table 4. Hyperparameters used for optimizing Peacock

B. Implementation Details for Peacock

B.1. Algorithm Details and Hyperparameters

For our implementation of Peacock, we first select the mean
constraint for of MaxEnt loss as our starting algorithm and
compute Lagrange multipliers λn using the Newton Raph-
son method. This step is performed in O(n) time using the
helper function g(λ) and its derivative g′(λ) before model
training begins.

For each iteration, the pairwise 1v1 constraints of CPC
loss are first computed before incorporating the adaptive γ
selection mechanism of AdaFocal loss. This step also in-
cludes the second highest confidence Pi(yj |x) from Dual
Focal loss to AdaFocal loss. This way we can reduce com-
pute overhead by combining both calibration methods into
a single step: LDual

AdaFocal = LAdaFocal + LDual.

Next, RankMixup is performed for every sampled in-
put image and label, with the MRL loss computed using
the coefficients α and m. For texts datasets, we perform
RankMixup at the feature level. Although vanilla Mixup
has been found to hurt ID calibration performance [74], our
findings suggest that by combining RankMixup with other
algorithms good balance between ID and OOD calibration
can be achieved. In our experience, we find that a large
ACLS margin, can lead to numerical instability when the
number of classes is large, thus we fixed mACLS = 6.0.

For completeness, we include the ACLS step in Algo-
rithm 1, however in our ablation study we show that ACLS
does not improve overall calibration performance and is not
included during optimization or our final proposed version
of Peacock. Next, an optional post-processing step using
AdaTS is performed by learning the adaptive temperature
on a seperate validation set. Finally, for the importance
weighted form of Peacock, we randomly initialize a self-
attention block and optimize it with Eq. (14) with Adam
optimizer and a learning rate of 3e-4 to learn a set of impor-
tance weights for each loss term.

Algorithm 1: Peacock - Unified Multi-Objective Optimization Calibration Framework
Data: Given training and validation set Dtrain = (xi, yi)

N
i=1, Dval = (xv, yv)

V
v=1

1: Initialize neural network parameters θ, learning rate schedule η and uniformly distributed weights wt = 1
A

2: Compute the global and local expectations for the mean and variance constraints µ, σ2

3: ↪→ E[Y] = µ and E[Y2] = σ2

4: Solve numerically for λµ ← NewtonRaphson() // MaxEnt loss root-finder
5: for e ∈ epochs do
6: for i ∈ B do // Sample mini-batch of size B

7: Perform FastMixup on images: x̃ = βxi + (1− β)xj // RankMixup
8: Perform FastMixup on labels: ỹ = βyi + (1− β)yj // RankMixup
9: Compute 1v1 loss: L1v1

CPC = − 1
(C−1)

∑
j ̸=y log

Piy

Piy+Pij
// CPC loss

10: if γt,b ≥ 0 then
11: LDual

AdaFocal = −
∑

k(1− Pi + Pj)
γt,b logPi // Dual AdaFocal loss

12: else if γt,b < 0 then
13: LDual

AdaFocal = −
∑

k(1 + Pi + Pj)
|γt,b| logPi // Inverse Dual AdaFocal loss

14: Compute MaxE loss LME = λµ(
∑

k f(Y)Pi(yk|x)− µG +
∑

k f(Y)Pi(yk|x)− µLk) // MaxEnt loss
15: Compute MRL loss LMRL = max(0,maxk P̃ −maxk P + mMRL) // RankMixup
16: if j = ŷ then
17: LACLS = λ1 max(0, gθ

j (x)−mink(g
θ
k(x))−mACLS)

2 // ACLS regularizer
18: else if j ̸= ŷ then
19: LACLS = λ2 max(0, gθ

ŷ(x)− gθ
j (x)−mACLS)

2 // ACLS regularizer
20: wt = ImportancePeacock(Lt(θ)) // Compute importance loss weights
21:
22: Compute Peacock:
23: ↪→ LPeacock = LDual

AdaFocal + w1LME
constraints + w2L1v1

CPC + w3LMRL

24: θnew ← θold − η∇θLPeacock // Update parameters θ by gradient descent
25: return θ
26:
27: Apply temperature scaling: θAdaTS ← AdaptiveTS(Dval, θ) // AdaTS
28: Function NewtonRaphson():
29: δ = 1e-15 // A small tolerance or stopping condition
30: while g(λ) > δ do
31: λn+1 = λn − g(λ)

g′(λ)
// Update Lagrange Multipliers λn

32: return λn

33: Function ImportancePeacock():

34: minwt

{∣∣∣∣∣∣∣∣∑A
t=1 wt

√
∆θLt(θ)

η

∣∣∣∣∣∣∣∣2
2

∣∣∣∣∑A
t=1 wt = 1, wt ≥ 0 ∀t

}
35: return wt

36: Function AdaptiveTS(Dval, θ):
37: Initialize VAE and MLP parameters Q,ϕ
38: while t < steps do
39: for v ∈ B do // Sample mini-batch of size B
40: ∇V AE ← ∇ELBO[Φ(x)]
41: q̃ = {logP (z|y)|∀y} z ∼ Qϕ(z|x)
42: ∇T ← log(softmax(gθ/T))
43: (θ, ϕ)t+1 ← (θ, ϕ)t − αlr(∇V AE +∇T)
44: return θAdaTS

Hyperparameters In general, we try to keep the de-
fault settings of each algorithm. However, when trying to
combine multiple of these components, it may become in-
evitable for some tuning to be performed. Indeed, perform-
ing a grid-search would be the best way to obtain the opti-
mal hyper-parameters. However, as discussed in our Limita-
tions, the number of parameters scale exponentially with the
number of calibration components selected for optimiza-
tion. This can be easily become very compute intensive and
would not be the focus of our work.

B.2. Accelerating RankMixup
Fig. 7 illustrates the comparisons between the original
RankMixup method and the optimized version proposed in
our paper. RankMixup, in its original form, requires two
forward passes during training: one for a full minibatch

(e.g., 512) of original images and another full minibatch
of mixed images. This process can be computationally ex-
pensive, especially for large datasets or complex models.
As a workaround, we propose an optimized variant of Fas-
tRankMixup, which addresses this limitation by dividing a
full batch of images into two halves: containing a minibatch
of half original and half mixed images (e.g., 512÷ 2 = 256).

This way, we only require a single forward pass instead
of the two forward passes, delivering a 2x speedup during
training compared to the original RankMixup implementa-
tion. This improvement in training efficiency can be partic-
ularly beneficial for large-scale training tasks, where com-
putational resources are often constrained. A caveat to this
method is that the minimum batchsize required will always
be two, as at least two samples are needed to be paired to-
gether for Mixup to be performed.

Model ModelModel

Full minibatch of
Original Images

Full minibatch of
Mixed Images

Logits Mixed logits

RankMixup Peacock Fast
RankMixup (Ours)

Requires two
forward passes

Requires one
forward pass

Half minibatch of
Mixed Images

Half minibatch of
Original Images

Concatenate

Half minibatch
of Logits

Half minibatch
of Mixed logits

Track minibatch
indices

Optimize

Figure 7. During training, RankMixup requires two forward passes: one for original images and one for mixed images, in order to compute
LMRL. We optimize RankMixup by mixing images and labels batchwise, resulting in a 2x speed up during training.

C. Proofs
C.1. Temperature-scaled bounds
Consider a temperature/mapping function T which scales
the output logits/hypothesis hθ of a model. Then the aver-
age of each temperature scaled hypothesis is given as:

CE
2
(T (hθ)) =

1

A

A∑
t=1

CE2(T (hθ
t)) (16)

Considering equal contributions of each individual tem-
perature scaled hypothesis, the temperature scaled multi-
objective learner T (Hθ) has the expected squared CE:

CE2(T (Hθ)) = E

(1

A

A∑
t=1

CE(T (hθ
t))

)2
 (17)

which follows the same bounds as previously defined in the
main paper.

CE2(T (Hθ)) ≤ CE
2
(T (hθ)) (18)

Empirically, Tab. 1 demonstrates that if the same map-
ping function or temperature T is applied to each hypothe-
sis (e.g., AdaTS), then the average of the scaled combined
learner will also obey the upper bound of the above inequal-
ity.

C.2. Estimating the Gradient
Recall in Sec. 4.2 of our main paper, the direct computa-
tion of ∇θLt(θ) requires the use of retaining the computa-
tional graph4 after the backward pass, which can be com-
pute intensive and significantly slows down training time.

4 For more details, see Pytorch autograd framework:
https://pytorch.org/docs/stable/autograd.html

In this section, we demonstrate that decrease rate estimates
for each loss term can act as alternatives to direct gradient
recomputation. By simply storing the previous loss value
computed (single step look-back), we can avoid graph re-
tention during the optimization for wt. Using a simple ex-
ample, we also show that our decrease rate estimates are
closely related to the solutions obtained using gradient de-
scent. For simplicity, we denote the partial derivatives as
∇θLt(θ) =

∂Lt(θ)
∂(θ) and the difference between old and new

parameters as ∆θLt(θ).

Consider the following task of approximating ∇θLt(θ).
By using the first order form of Taylor’s Theorem, the loss
gradients can be rewritten as the following equation:

∇θLt(θ) =
Lt(θnew)− Lt(θold)

∆θ
+ϵ(θ) =

∆θLt(θ)

∆θ
+ϵ(θ)

(19)

where ∆θLt(θ) is the rate of change for each loss term
with respect to the change of model parameters θnew and
θold, paired by a small error term ϵ(θ). From the gradi-
ent descent update rule, the change in model parameters is
given by:

θnew = θold − η∇θLt(θ)

∆θ = −η∇θLt(θ)
(20)

where the difference between new and old network pa-
rameters are obtained using the gradients and a learning rate
η. By substituting Eq. (20) into Eq. (19):

https://pytorch.org/docs/stable/autograd.html

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Parameters

0

20

40

60

80

100
Ob

je
ct

iv
e

Fu
nc

tio
n

L(
)

Empirical Example (= 0.10)
Loss curve
Gradient Descent
Approx Descent (Ours)
Optima/Minima

(8a) Toy sketch illustrating the solution of our method
(green) compared to gradient descent (blue). Our method
closely approximates gradient descent.

0 200 400 600 800 1000
Steps/Iterations

0

2

4

6

8

10

Pa
ra

m
et

er
s

Gradient Descent
Approximate (Ours)

(8b) We compare the solutions given by our method and
gradient descent, for η = 0.1, our solution is close to the
solution by gradient descent.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Parameters

0

20

40

60

80

100

Ob
je

ct
iv

e
Fu

nc
tio

n
L(

)

Empirical Example (= 0.01)
Loss curve
Gradient Descent
Approx Descent (Ours)
Optima/Minima

(9a) By reducing the learning rate, our method (green) pro-
vides an even closer estimate to gradient descent (blue).

0 200 400 600 800 1000
Steps/Iterations

0

2

4

6

8

10

Pa
ra

m
et

er
s

Gradient Descent
Approximate (Ours)

(9b) We compare the solutions given by our method and
gradient descent for η = 0.01, our method can be im-
proved by reducing the learning rate.

∇θLt(θ)
2 =

∆θLt(θ)

−η
+ ϵ(θ) =

Lt(θold)− Lt(θnew)

η
+ ϵ(θ)

*Note the flip in sign

∇θLt(θ) =

√
∆θLt(θ)

η
+ ϵ(θ) ≈

√
∆θLt(θ)

η
(21)

with the small error term ϵ(θ) dropped.

Key Assumptions: Our main paper highlighted the es-
sential assumptions underlying this formulation: 1.) The
loss terms Lt are convex and optimizable by gradient de-
scent. 2.) Each loss term monotonically decreases i.e., the
loss evaluated at previous iterations will always be strictly
larger than the loss at the current iteration Lt(θold) >

Lt(θnew). This assumption ensures that the ratio
√

∆θLt(θ)
η

remains positive, avoiding the computation of complex
numbers. Moreover, the small learning rates commonly
used in deep learning frameworks tend to be sufficiently
small (e.g., η = 2.5e-4) allowing for accurate linear approx-
imations. In practice, we can apply the ReLU function to

the gradient update, i.e
√

ReLU(∆θLt(θ)
η) if the gradient

descent step leads to an increase in the loss, violating the
assumption that Lt(θold) > Lt(θnew). This ensures that the
update is scaled down or ignored in the optimization pro-
cess.

Simple Empirical Example We further support our find-
ings by including a simple empirical example comparing
gradient descent and our proposed method. Consider a
smooth, convex objective function Lθ = θ2. Fig. 8a il-

Figure 10. Covariate shifts can be simulated using common image corruptions or caused by natural differences during data collection
in-the-wild.

lustrates our goal of obtaining a set of parameters θ such
that Lθ is minimized. For a fixed learning rate of η = 0.1,
1000 iteration steps and a starting point of θ = 10, our solu-
tion given by our method (in green) is relatively close com-
pared to the solution given by gradient descent (in blue),
with a slight delay and an error of roughly 0.5. In Fig. 9a
we can further improve our method’s solution by reducing
the learning rate to η = 0.01, which provides an even closer
estimate to the solutions given by gradient descent and a
reduced relative error of roughly 0.05.

D. Supplementary Experiments and Results
D.1. Dataset Details
Synthetic OOD We train our models with clean im-
ages from the original CIFAR, TinyImageNet and evaluate
their OOD performance on their corrupted forms CIFAR-C,
TinyImageNet-C.
1. CIFAR10/CIFAR100 [33] RGB images of size (32x32)

containing ten and hundred classes. The train-
ing/validation/testing sets contain 45,000/5,000/10,000

samples respectively.
2. TinyImagenet [10] A miniature version of the ImageNet

dataset containing images of size (64x64) of 200 classes.
There are 100,000 images for training and 10,000 images
for validation/testing.

3. CIFAR10-C/CIFAR100-C/TinyImagenet-C [25] A
widely popular calibration benchmark, containing
corrupted variants of CIFAR and TinyImageNet. Stan-
dard image corruptions (total of 19) are applied on
the original test sets across five increasing levels of
severities.

Real-world OOD For wild OOD, we learn our models
using the provided ID training sets and OOD sets for vali-
dation and testing [32].
1. Camelyon17 [1]: A binary task to detect if a (32x32)

cell tissue slide is benign or malignant. The images are
collected across different hospitals with equipment that
may vary OOD from the training set.

2. iWildCam [2]: Animal species tend to vary across differ-
ent backgrounds and terrains. The goal is to classify 182

Dataset Metric MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10

Acc. ↑ 94.0±0.2 93.4±0.4 94.1±0.1 94.6±0.1 94.5±0.1 94.3±0.1 93.8±0.1 93.9±0.2
ECE ↓ 1.1±0.1 0.8±0.1 3.1±0.1 2.9±0.1 1.3±0.1 3.0±0.1 0.6±0.1 0.6±0.1

CECE ↓ 0.4±0.1 0.3±0.1 2.8±0.1 2.7±0.1 0.4±0.1 2.7±0.1 0.2±0.1 0.2±0.1
NLL ↓ 249.8±0.4 232.7±0.1 346.9±0.2 394.4±0.2 253.7±0.1 345.3±0.3 224.4±0.4 224.5±4.1

CIFAR100

Acc. ↑ 73.8 ±0.1 75.8 ±0.1 74.9±0.3 74.7±0.1 75.4±0.1 75.3±0.1 74.5±0.4 73.5±0.5
ECE ↓ 5.4±0.5 6.8±0.1 4.9±0.1 8.8±0.3 9.1±0.1 4.5±0.3 4.1±0.3 3.9±0.2

CECE ↓ 0.2±0.1 0.1±0.1 2.9±0.1 2.3±0.2 0.1±0.1 1.7±0.1 0.1±0.1 0.1±0.1
NLL ↓ 312.7±0.6 306.5±2.3 348.6±0.7 432.2±0.8 319.8±0.4 346.6±1.0 298.3±1.2 283.9±0.1

TinyImageNet

Acc. ↑ 63.1±0.3 60.8±0.1 61.6±0.3 65.0±0.3 63.2±0.3 64.9±0.1 61.2±0.1 62.3±0.4
ECE ↓ 18.2±0.3 6.1±0.5 5.5±0.3 10.3±0.4 6.8±0.1 5.0±0.3 6.2±0.3 3.9±0.3

CECE ↓ 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1
NLL ↓ 322.0±0.5 320.5±0.3 343.2±1.0 358.5±1.6 339.2±1.0 342.3±0.4 333.9±2 324.2±2.4

Table 5. We report the ID test scores (%) for reruns computed across 3 seeds for Peacock and its components.

Dataset Metric MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10-C
AdaECE ↓ 6.9±0.1 6.2±0.4 11.5±0.2 10.7±0.4 7.2±0.2 11.5±0.1 6.3±0.1 6.2±0.3

OE ↓ 3.9±0.3 3.0±0.3 9.6±0.2 9.1±0.4 3.8±0.1 9.5±0.1 3.3±0.1 3.5±0.2

CIFAR100-C
AdaECE ↓ 11.0±0.1 13.7±0.3 8.4±0.2 13.7±0.2 15.5±0.1 10.2±0.3 9.7±0.3 9.6±0.3

OE ↓ 0.5±0.1 0.7±0.1 2.5±0.2 1.8±0.1 0.7±0.1 2.01±0.1 1.3±0.1 1.6±0.1

TinyImageNet-C
AdaECE ↓ 12.6±0.3 13.9±0.3 20.2±0.2 16.3±0.2 18.8±0.2 20.6±0.4 10.4±0.2 10.7±0.2

OE ↓ 4.4±0.3 4.5±0.3 10.4±0.2 8.5±0.2 9.4±0.2 11.1±0.4 2.3±0.2 2.3±0.2

Camelyon17
AdaECE ↓ 12.3±0.4 20.4±0.1 22.4±4.6 20.1±1.6 15.4±2.5 19.6±0.2 11.7±0.7 9.8±1.8

OE ↓ 10.9±0.8 19.6±0.1 22.0±4.6 19.8±1.6 14.3±2.4 18.9±0.1 10.6±0.4 9.0±1.6

iWildCam
AdaECE ↓ 21.0±3.2 23.0±0.5 25.5±0.7 20.3±1.1 13.0±2.5 20.6±1.8 9.7±0.3 12.6±1.4

OE ↓ 14.3±3.6 16.8±0.2 20.4±0.8 15.5±0.2 8.21±1.4 15.4±1.2 5.2±0.2 7.9±1.0

FmoW
AdaECE ↓ 20.0±9.9 20.9±8.6 41.7±0.1 22.4±0.9 9.73±0.1 21.7±0.2 10.5±0.2 10.6±0.1

OE ↓ 13.7±7.7 14.2±7.0 33.7±0.2 16.7±0.8 4.78±0.1 14.6±0.2 5.5±0.3 5.4±0.3

Table 6. We report additional OOD test scores (%) for reruns evaluated on both synthetic and wild benchmarks for Peacock and its
components.

Algorithm Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑A

t wt = 1

Equal-Impt. 51.8±0.1 9.6±0.2 50.1±0.2 0.33 0.33 0.33 Yes
MTAN [43] 50.8±0.1 10.2±0.4 50.7±0.2 0.33 0.33 0.33 Yes
CoVV [17] 52.6±0.1 12.0±0.4 50.6±0.2 0.01 0.52 0.47 Yes
GradNorm [5] 48.9±0.6 9.3±0.7 85.8±0.7 2.99 0.00 0.00 No
MT-MOO [65] 51.9±0.5 9.3±0.5 67.5±0.5 0.36 0.47 0.16 Yes
Weighted-Impt. (Ours) 52.6±0.1 9.3±0.3 50.5±0.2 0.00 0.51 0.49 Yes

Table 7. Comparisons of different multi-objective optimization methods for Peacock. Our weighted importance formulation is fast and
effective.

animal classes collected from camera traps deployed in
different areas of the wilderness.

3. FMoW [8]: Satellite imagery of topographies and build-
ings alike tend to differ greatly across countries. The
task is classify the OOD shifted terrains from one out of
62 classes.

D.2. Supplementary Experiments and Results

ID Results: As demonstrated in Tab. 5, our synthetic
benchmark results confirm Peacock’s highly competitive
performance on ID test sets. As discussed in the main text,
Peacock’s calibration error is inherently bounded by the av-
erage calibration error of its constituent components. Con-
sequently, even if some components underperform, Pea-
cock’s overall calibration remains well-calibratied, irrespec-
tive of whether the data is in-distribution (ID) or out-of-
distribution (OOD).

Additional OOD Results: Tab. 5, shows OOD supple-
mentary results evaluated using AdaECE [54] and OE [68].
Our analysis using these additional metrics aligns with the
results presented in our primary findings. While the theoret-
ical proofs in our main paper and Appendix C are explicitly
stated only for the ECE, we anticipate that our arguments
remain valid for other calibration metrics, which are often
derivatives or closely related to ECE. We intend to explore
this aspect further in future research. Additional results for
non-standard OOD scenarios are presented in Tab. 3.

Additional Multi-Objective Optimization Results: Ad-
ditional results for our proposed weighted-importance for-
mulation are provided in Tab. 8 and Tab. 9. Our results high-
light the versatility, effectiveness and speed acorss a wide
variety of different architectures and methods.

Algorithm Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑A

t wt = 1

Equal-Importance 76.8±0.2 6.3±0.1 48.3±0.2 0.33 0.33 0.33 Yes
MTAN [43] 76.5±0.1 6.5±0.1 48.5±0.2 0.33 0.33 0.33 Yes
CoVV [17] 77.3±0.1 6.5±0.1 48.9±0.1 0.01 0.52 0.47 Yes
GradNorm [5] 75.7±0.6 6.8±0.4 79.1±0.1 2.99 0.00 0.00 No
MT-MOO [65] 76.4±0.4 6.5±0.1 66.3±0.3 0.36 0.47 0.16 Yes
Weighted-Importance (Ours) 77.3±0.4 6.2±0.3 48.5±0.2 0.00 0.53 0.47 Yes

Table 8. Comparisons of different multi-objective optimization methods for Peacock evaluated on CIFAR10/CIFAR10-C using ResNet-18.

Algorithm (CIFAR10-C) Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑

t wt = 1

Equal-Importance 82.7±0.1 9.8±0.3 838±3 0.33 0.33 0.33 Yes
CoVV [17] 83.1±0.2 8.5±0.3 827±5 0.02 0.22 0.76 Yes
GradNorm [5] 80.2±0.4 9.7±0.4 1347±3 3.00 0.00 0.00 No
MT-MOO [65] 80.7±0.1 9.8±0.1 915±3 0.43 0.54 0.03 Yes
Weighted-Importance (Ours) 81.0±0.4 6.1±0.3 840±5 0.00 0.53 0.47 Yes

Table 9. Comparisons of different multi-objective methods for Peacock using SWINV2.

(a) CIFAR10 (b) CIFAR100
Algorithm (ID Performance) ECE NLL KSE ECE NLL KSE

Peacock w/o MaxE 1.2±0.1 271.8±2.9 1.1±0.1 8.4±0.1 316.8±1.7 8.4±0.1

Peacock w/o AdaFocal 1.7±0.1 289.5±4.2 1.8±0.1 6.1±0.7 314.8±1.0 6.1±0.7

Peacock w/o RankMixup 1.9±0.2 294.8±3.2 2.0±0.2 6.1±0.3 316.6±0.9 6.2±0.3

Peacock w/o CPC 1.6±0.2 284.6±6.3 1.9±0.2 6.0±0.7 317.8±1.9 6.0±0.7

Peacock w/o Dual 1.5±0.1 278.2±2.9 1.7±0.1 6.5±0.2 308.6±0.9 6.5±0.2

Peacock w/o ACLS 0.6±0.1 240.9±0.4 0.9±0.1 6.5±0.2 306.3±0.9 6.8±0.2

(a) CIFAR10-C (b) CIFAR100-C
Algorithm (OOD Performance) ECE NLL KSE ECE NLL KSE

Peacock w/o MaxE 7.6±0.4 270.4±2.9 7.2±0.4 15.3±0.1 360.0±0.5 14.9±0.1

Peacock w/o AdaFocal 8.6±0.4 286.0±1.3 8.3±0.4 12.4±0.6 355.9±1.3 12.2±0.6

Peacock w/o RankMixup 10.1±0.4 296.8±2.8 9.9±0.5 12.7±0.4 358.4±0.4 12.4±0.4

Peacock w/o CPC 8.7±0.4 285.0±1.8 8.3±0.3 12.4±0.7 359.9±1.7 12.3±0.7

Peacock w/o Dual 8.0±0.1 278.7±0.8 7.7±0.1 12.5±0.2 353.2±1.1 12.3±0.2

Peacock w/o ACLS 6.5±0.2 245.6±0.4 6.3±0.1 11.6±0.3 358.3±0.5 11.7±0.5

Table 10. Component analysis of Peacock reveals the best performance when all algorithms except ACLS are combined.

D.3. Ablation Studies

To gain a better understanding of each component in Pea-
cock, we provide an ablation study that removes each com-
ponent from the full combination of Peacock. In Tab. 10, we
show the respective ECE, OE and KSE scores of each com-
bination evaluated on CIFAR/CIFAR-C. While each com-
ponent generally helps improve calibration performance,
we identify RankMixup and MaxEnt loss as two of the most
critical building blocks of Peacock. Since the removal of ei-
ther RankMixup or MaxEnt loss would cause a noticeable
drop in calibration performance. Although ACLS indepen-
dently delivers competitive performance, we find it to be
the least impactful, since its removal leads to better calibra-
tion in Peacock. Therefore we propose the final version of
equal and importance weighted forms Peacock to be with-
out ACLS. Note that the experiments performed in this ab-
lation study does not include temperature scaling. For e.g.,
removing RankMixup, would cause the highest ECE on
CIFAR10/CIFAR10-C with 1.9% and 10.1% respectively.

The lack of MaxEnt loss constraints delivers the worst re-
sult on CIFAR100/CIFAR100-C with 8.4% and 15.3%.

E. Limitations
Component Permutations In the case of Peacock, we
featured a total of seven baselines which gives a total of
27 − 1 permutations. While the primary focus of our paper
is looking at whether different calibration algorithms can
be successfully combined, we constrained Peacock to the
seven featured algorithms so as to keep experiments man-
ageable. We note that there are many potential algorithms
in the calibration family that could become promising can-
didates (see Fig. 2).

Modularity and Future Components To the best of our
ability, we built Peacock based on the most relevant SOTA
calibration components. For each algorithm, we closely ref-
erenced the source code provided by the respective authors.
As we believe that Peacock will perform as well/better than

the average of its components, we specifically built Peacock
in a modular fashion allowing the easy integration of future
methods.

