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Supplementary Material

In this supplementary material, we first provide addi-
tional derivations and insights in Section 7. We then present
our method through pseudocode in Section 8, followed by
implementation details in Section 9. Dataset specifications
are described in Section 10, while limitations and future
work are discussed in Section 11. Finally, additional ex-
perimental results are presented in Section 12.

7. Detailed method
7.1. Conditional Score Derivation
In this section, we provide the complete derivation of our
conditional score. Applying Bayes’ theorem, the score
function of the conditional distribution can be expressed as:

∇zt
log p(zt | y1,y2) = ∇zt

log p(zt | y1)

+∇zt
log p(y2 | zt,y1) (18)

Under mild assumptions [7], and a decoder D that maps
the latent back to the image space, we can approximate this
score function using:

∇zt log p(y2 | zt,y1) ≈ ∇zt log p(y2 | ẑ0,y1)

≈ ∇zt log p(y2 |D(ẑ0),y1) (19)

where ẑ0 is estimated using Tweedie’s formula [37]:

ẑ0 =
1√
ᾱt

(
zt +

√
1− ᾱtsθ (zt, t,y1)

)
(20)

Leveraging the Gaussian noise model assumption in Equa-
tion 11, we get:

∇zt
log p (y2 | zt,y1) ≃ −

1

σ2
∇zt
∥y2 − Py1→y2

(x̃0,y1)∥22
(21)

in which x̃0 is the metric depth calculated following the
Equation 13.

Thus, the final conditional score function is:

∇zt
log p (zt | y1,y2) ≈ ∇zt

log p(zt | y1)

− λ∇zt
∥y2 − Py1→y2

(x̃0,y1)∥22
(22)

7.2. Differentiable warping
As discussed in Section 3.3 and Section 4.2, we use dif-
ferentiable warping to render novel view given predicted
depth. Then, our method leverages given RGB input im-
age to calculate photometric loss as guidance (see Equa-
tion 14) for diffusion process. There are two design choices

for warping operator, which are forward warping operator
Py1→y2

(x1,y1), which projects y1 onto y2; and the back-
ward warping operator Py2→y1

(x1,y2). If one opts to use
forward warping as renderer, Lgeo in Equation 14 has the
following form:

Lforward
geo = η(1− SSIM (y2,Py1→y2

(x̃0,y1)))/2

+ (1− η)∥y2 − Py1→y2 (x̃0,y1) ∥1 (23)

otherwise, the backward warping could also be used with
the form:

Lbackward
geo = η(1− SSIM (y1,Py2→y1

(x̃0,y2)))/2

+ (1− η)∥y1 − Py2→y1 (x̃0,y2) ∥1 (24)

Now, we discuss the design choice of the two options.
Given a source image (y1), target image (y2), intrinsic cam-
era matrices K1,K2, and camera-to-world extrinsic matri-
ces E1, E2 for the source and target views respectively, we
establish a generalized framework for our method. We ex-
plicitly represent both camera extrinsics to handle arbitrary
camera configurations rather than just using a single rel-
ative transformation T1→2 as in Equation 9. In the spe-
cific case of calibrated stereo pairs captured simultaneously
by a binocular rig, the transformation simplifies to a pure
translation. However, for arbitrarily captured image pairs,
the complete extrinsic matrices are necessary to accurately
transform points between the two coordinate systems.

Forward warping maps pixels from a source image (y1)
to positions in target image (y2). The target coordinate is
formulated as:

c2 ∼ K2E
−1
2 E1x1(c1)K

−1
1 c1 (25)

where c1 and c2 denote the homogeneous pixel coordi-
nates in y1 and y2, respectively, and x1(c1) represents the
depth at pixel c1 in y1. After getting the corresponding
pixel coordinates, we can ”splat” each source pixel to its
corresponding location in target view. However, there are a
few implementation challenges. A fundamental issue is that
some target pixels might not receive any values, creating
holes in the warped image. These voids occur due to disoc-
clusions (regions visible in the target view but occluded in
the source view) and sampling disparities (discrete source
pixels mapping to non-integer target coordinates with gaps
between them). Addressing these holes requires complex
post-processing techniques such as depth-aware inpainting
or multi-scale filtering. The non-integer mapping of source



pixels to target coordinates further introduces discretization
errors and potential aliasing, requiring appropriate interpo-
lation strategies. Depth map inaccuracies are particularly
problematic at discontinuities, where slight errors can sig-
nificantly distort the warped result, making it even more dif-
ficult to apply to our framework. From a computational per-
spective, the unpredictable memory access patterns inherent
in forward warping present optimization difficulties, partic-
ularly for parallel processing implementations.

Backward warping pulls back pixels from target image
(y2) to source image (y1). It is worth noting that our back-
ward warping is different from previous works [15, 25],
where they perform backward warping from source to tar-
get given target depth. One the other hand, we warp from
target back to source using source depth. Specifically, our
backward warping is formulated as:

c2 ∼ K2E2E
−1
1 x1(c1)K

−1
1 c1 (26)

After computing the corresponding pixel coordinates, we
sample pixel colors from the target image at these new coor-
dinates. Since these coordinates are generally non-integer,
we employ bilinear interpolation for color sampling. This
approach inherently avoids the hole artifacts characteristic
of forward warping methods. For this reason, we adopt
backward warping as our rendering technique throughout
this work.

Discussion. We explored several alternative techniques
that ultimately proved suboptimal. Initial experiments with
point cloud rasterization from Pytorch3D [35] revealed high
sensitivity to point diameter and opacity parameters, result-
ing in rendering artifacts including holes and visible disk-
like structures. Similarly, we attempted to initialize the
point cloud as 3D Gaussians (3DGS) to leverage recent dif-
ferentiable Gaussian rasterization techniques [24]. How-
ever, the 3DGS renderer introduces an excessive number of
parameters to optimize, which proved inefficient during the
limited sampling steps of our diffusion process.

Left-right consistency. While left-right consistency
checks are commonly employed in stereo methods [15], we
deliberately omit this approach in our framework. Unlike
learning-based methods that can infer depth of both left
and right from a single image, our optimization-based tech-
nique would require running the depth prediction process
twice—once for each view—effectively doubling the com-
putational cost. Therefore, in this work, we demonstrate
our method’s efficacy by optimizing the photometric loss
using only a single reference view, achieving a favorable
balance between accuracy and computational efficiency.

7.3. Regularization
As described in Section 4, we stabilize the optimization
process by introducing a global scale gs and applying L2

regularization to the scale ŝ and shift t̂ parameters. To il-
lustrate the design of these parameters, we present a toy
example. Given a predicted relative depth map x̃rel

0 (nor-
malized to the range [0, 1]), we incrementally increase the
global scale gs to compute the scaled depth x̃scale

0 such that
x̃scale
0 = gs · x̃rel

0 . For each scale, we evaluate the Absolute
Relative (AbsRel) metric (where lower values are better)
using the scaled depth x̃scale

0 and the ground truth depth.
Additionally, using the left image, right image, and the pre-
dicted scaled depth x̃scale

0 , we compute the reprojection loss
Lgeo, as defined in Equation 14, for each scale.

As shown in Figure 10, increasing the depth scale im-
proves the resemblance of the re-rendered image to the left
image. This occurs because closer depths result in larger
disparities between the source and target viewpoints, requir-
ing more significant transformations to align the images.
Such large transformations often cause distortions, stretch-
ing, or undersampling in areas lacking sufficient source
information, degrading the quality of the re-rendered im-
age. In contrast, at greater depths, disparities between the
viewpoints are smaller, leading to less dramatic transforma-
tions. These smaller adjustments maintain spatial coherence
more effectively and reduce interpolation artifacts, produc-
ing sharper and more accurate re-rendered images.

Figures 7 and 8 demonstrate this pattern as the global
scale gs increases from 1 to 50. However, further increas-
ing gs, while improving the re-rendered image quality and
enhancing Lgeo, leads to worse AbsRel metrics. This in-
dicates that the depth scale x̃scale

0 deviates from the ground
truth depth. This behavior underscores the strong geometric
guidance provided by Lgeo for the diffusion model during
sampling.

To balance these considerations, we pre-select gs based
on the geometric loss. Specifically, we search for gs within
a predefined depth range and define the optimal scale as
g∗s := argmings Lgeo. Our approach can be viewed
as a variant of the traditional Plane Sweep Volume tech-
nique [9], commonly used in stereo vision. Unlike conven-
tional methods, our approach leverages the predicted rela-
tive depth to identify the correct depth scale, which is then
applied uniformly to all pixels.

Finally, we apply L2 regularization to the scale and shift
parameters of x̃rel

0 to counteract the tendency of the opti-
mization process to inflate these parameters, which can lead
to incorrect metric depth predictions.

8. Algorithm

We provide detail pseudo algorithm for our method at Algo-
rithm 1. To avoid confusion, note that while learnable scale
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Figure 7. Global scale up to 80
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Figure 8. Global scale up to 600

Figure 9. We gradually increase the global scale gs and observe a strong correlation between the reprojection loss and the AbsRel metric.
For this example, the AbsRel reaches its minimum at a global scale of 50. However, beyond 50, the AbsRel significantly increases, while
the reprojection loss shows little change, deviating from the pattern.
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Figure 10. We gradually increase the global scale gs and re-render the left image using the right image and x̃scale
0 (see Section 7.3). While

greater depths result in higher-quality re-rendered images, this does not necessarily correspond to more accurate predicted depths.

and shift are denoted as (ŝ, t̂), score function and time step
of diffusion are denoted as (s, t), respectively.

9. Implementation details

Geometric optimization steps. Our method employs a
test-time optimization approach. While multiple gradient
updates could theoretically be performed during sampling



Algorithm 1 Geometric-Guided Diffusion for Metric Depth Estimation

Require: Stereo images y1,y2, camera intrinsics and extrinsics, pretrained diffusion model sθ(zt, t,y1)
Initialize learnable scale ŝ and shift t̂
Initialize random noise zT ∼ N (0, I).
for t = T − 1 to 0 do
ŝt+1 = sθ(zt, t,y1) ▷ Compute the score
ẑ0 = 1√

ᾱt

(
zt +

√
1− ᾱtsθ (zt, t,y1)

)
▷ Compute relative depth using Tweedie’s formula

x̃0 = softplus(ŝ) ·D(z0) + softplus(t̂) ▷ Convert relative depth to metric scale
Compute Lgeo following Eq. 14
ŝ← ŝ− λŝ∇ŝLgeo ▷ Gradient update for ŝ
t̂← t̂− λt̂∇t̂Lgeo ▷ Gradient update for t̂
zt−1 =

√
ᾱt−1ẑ0 +

√
1− ᾱt−1sθ(zt, t,y1)− λ∇zt

Lgeo ▷ Perform DDIM step with geometric guidance
end for
Output: Estimated metric depth map x̃0

Figure 11. We increase the number of times to update inside one
sampling step. We observe that it not only does not improve result,
but also very time consuming to run.

to minimize the geometric loss, our experiments in Fig-
ure 11 demonstrate that only a limited number of gradient
steps are beneficial. Consequently, we implement a single
gradient update per sampling step in this work. Empirical
observations indicate that increasing the number of gradi-
ent updates not only fails to improve performance but also
significantly increases computational time.

Inference time. Inference time for a single sample us-
ing our approach is approximately 7 seconds on an RTX
A6000 GPU with images of 768 pixels in dimension. This
measurement excludes data preparation time, which varies
across datasets.

Run time comparison. Our method requires test-time
optimization but maintains computational efficiency com-

parable to the baseline Marigold [22], adding only sec-
onds per image to processing time. This efficiency stems
from our implementation of single-step gradient updates
with minimal learnable parameters. Additionally, our depth
warping-based rendering technique is both fast and fully
differentiable. Consequently, despite achieving superior re-
sults, our approach does not significantly increase compu-
tational overhead compared to Marigold.

10. Dataset details

Training data. Our proposed method is a test time
optimization-based, so we do not require any training sam-
ple. For details about training dataset of our baseline
method, we refer reader to Marigold [22].

Evaluation data. We evaluate our proposed approach on
four distinct datasets. The KITTI-2015 dataset comprises
200 stereo pairs depicting outdoor scenes. The Middlebury
dataset contains 15 stereo pairs predominantly featuring in-
door environments. The Booster dataset includes 228 stereo
pairs with challenging non-Lambertian surfaces. For the
Tanks and Temples dataset, we randomly sampled 116 im-
age pairs from a multi-view dataset spanning four scenes.

11. Limitation

Since our method is based on diffusion sampling process, it
is not suitable for real time application. Additionally, since
we employ depth warping as a rendering technique and uti-
lize photometric loss as an optimization objective, our ap-
proach exhibits sensitivity to significant illumination vari-
ations between stereo images. Potential solutions include
applying color correction prior to image rendering or imple-
menting left-right consistency as described in Section 7.2.
We defer these improvements to future work.



12. Additional qualitative results
Additional qualitative results are presented in Figure 12,
Figure 13, Figure 14.
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Figure 12. Additional qualitative results. Our method demonstrates superior depth quality in metric depth estimation, particularly in
high-depth-range scenarios such as those found in the KITTI-2015 dataset [29], outperforming competing approaches.
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Figure 13. Additional qualitative results on Booster dataset [33]
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Figure 14. Additional qualitative results on Booster dataset [33]
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