A. Performance of Baseline with Further Fine-
tuning

We investigate the baseline performance with extended fine-
tuning. Figure 3 shows our baseline training, validation,
and test accuracy over 300 epochs for ResNet-34 on the
CIFAR-100 dataset. We find that the performance plateaued
at around epoch 60, and fine-tuning beyond 100 epochs did
not yield further performance improvements.
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Figure 3. This graph shows our baseline training, validation, and
test accuracy over 300 epochs for the ResNet-34 model on the
CIFAR-100 dataset. The accuracy results are averaged over three
random seeds.

B. Performance of Adversarial Correction (Ex-
tension)

B.1. Adversarial Correction of ResNets

We also apply another variant of BI method, stated below:
Targeted Variant of Basic Iterative (VBI): In addition to
the standard untargeted BI method, we created a targeted
variant called VBI. Unlike BI (Eq. 1), which moves away
from the true label, VBI (Eq. 7) operates in the opposite
direction, moving towards the true label by negating the sign
of the gradient sign function.

XX]:D){-Il = C‘X!lp{XXBI - aSign<vXJ(XXBI7 ytrue)) }
’ (7

The comprehensive performance results of our pipeline
on FP32 models are presented in Tab. 5, an extended version
of Tab. 1. Additionally, the complete performance results
of our pipeline on quantized Int8 models can be found in
Tab. 6, which is an extended version of Tab. 3. The attacks
all seem to have similar performance improvements, except
for some directed attacks where we use different directions
to reduce the effectiveness of incorrect classifications versus
correct ones. Specifically, we can move away along the
gradient of the highest probability class of incorrect samples
to weaken the accuracy of the incorrect input (i.e., BIH
attack) or move toward the true labels (i.e., VBI attack).

Moving toward the true labels yields higher attack correction
rates but similar performance compared to moving away
along the gradient of the highest probability class. Table 6
also shows that increasing the number of attack iterations to
increase the attack success rate for the VBI attack does not
correlate closely with the correction rate. However, gradient-
based attacks, such as DDN and VBI, have better overall
performance than non-gradient-based attacks, such as salt
and pepper.

The adversarial correction does indeed reduce the training
loss. In Fig. 4b and Fig. 4d we can see that both targeted
(VBI) and untargeted (LL) adversarial attacks can success-
fully reduce the logit level of the initially maximum proba-
bility incorrect label as compared with the logit level of the
true label, resulting in correction.
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Figure 4. The incorrect class (max) and true class logits change
for uncorrected (a,c) and corrected (b,d) samples of CIFAR-100
after applying the corrective LL (a,b) and VBI (c,d) attacks on the
ResNet-34. The vertical dashed lines indicate the mean values of
incorrect class (max logit) and true class logits change.

B.2. Adversarial Correction vs. Adversarial Per-
turbation

In the Feng and Tu theory [13], all that is needed in the first
step of the input space training (IST) is to perturb the input
so as to reduce the loss. It is not necessary to actually change
the input so as to have the network give the correct answer;
all that is required is that the loss be reduced.

In the experiments shown in Tab. |, we defined T, as
the set of successfully corrected samples in step 3 of our
adversarial correction approach. If we instead consider T,
to include all perturbed samples, regardless of whether their
outputs are corrected, 7" will have the same size as the origi-
nal training dataset. We refer to this as a variant approach. In



Table 5. Accuracy (%) of FP32 baseline models (BL), which is fine-tuned on the CIFAR train domains, and accuracy of baselines after
applying our approach (denoted as BL-IST) by using different attacks to generate adversarial domains. The data is reported as an average of

three seeds.

CIFAR-10 CIFAR-100
Model Approach - - - -
Corr. rate T Train Valid A Acc  Corr. rate T Train Valid Test A Acc
BL (FP32) - - 99.61 +0.56 93.73 +0.43 93.29 +0.37 - - - 99.00 + 1.19  76.84 +0.12 77.04 + 0.08 -
D-CORAL - 99.96 +£0.04 99.69 +0.36 9591 4+020 9557+0.13 +2.28 - 98.86 £ 0.94 98.84 +£098 80.14 +£0.47 80.27+0.74 +3.23
D-CORAL +LL 55/176 100.00 99.80 +0.28 96.17 £0.08 9593 +0.15 +2.64 70/451 100.00 9920 £0.92 80.99 +£0.21 80.93+0.46 +3.90
ResNet-18 D-CORAL + BIH 99/176 100.00 99.86 £0.19 96.16 +0.28 9587 £0.24 +2.58 51/451 100.00 99.36 £0.72  80.75+£0.54 80.99 045 +3.96
(11.19M) D-CORAL + VBl 121/176 100.00 99.59 +0.46 96.09 +0.22 9597 +0.12 +2.68  226/451 100.00 99.47 +0.59 80.81 +0.18 80.92+0.56 +3.89
D-CORAL + VBI 175/176 100.00 99.97 £0.04 96.19+0.15 9577 +0.06 +248  446/451 100.00 99.80 £0.20 80.37 +£0.98 80.54 +0.80 +3.50
D-CORAL + DDN 176/176 100.00 100.00 96.21 +£0.28 9584 £0.07 +2.55 451/451 99.98 £ 0.01 99.98 +£0.01 80.79 £0.45 80.82+0.35 +3.79
D-CORAL + SP 45/176 100.00 99.79 £0.29 96.17 £0.12 9580 +£0.08 +2.51 43/451 100.00 99.16 £1.00 80.63 +0.54 80.89 +0.61 +3.86
BL (FP32) - - 99.43 £0.67 9471 £0.05 94.22 +0.06 - - - 9436 +224 78.12+0.79 78.41+0.10 -
D-CORAL - 99.92+0.03 99.81 £0.10 96.78 £0.08 96.40+0.05 +2.18 - 9538 £ 1.56 9526+ 1.64 8299 +0.48 8298 +0.07 +4.57
D-CORAL +LL 25/80  99.98 £0.02 99.89 £0.07 96.53+0.16 96.31+0.12 +2.09  370/2538 100.00 96.05 +1.39 83.13+0.08 82.69+0.12 +428
ResNet-34 D-CORAL + BIH 46/80 99.99 +£0.01 99.94+0.06 96.53+023 96.36+0.07 +2.14  655/2538 100.00 9731+ 1.19 83.04+1.19 8331+0.06 +4.90
(21.30M) D-CORAL + VBleri 53/80 99.99 99.97 £0.01 96.62+0.07 9626 +0.12 +2.04 1207/2538 99.99 97.40 £0.92 8339+0.44 83.11+023 +4.70
D-CORAL + VBI 80/80 100.00 100.00 96.71 £0.22 9626 £0.12  +2.04  2490/2538 100.00 99.21 £0.12 8334 +£036 83261045 +485
D-CORAL + DDN 80/80 100.00 100.00 96.71 £0.22  96.71 +£0.05 +2.49 2538/2538 99.98 £0.01 99.97 +£0.01 83.55+0.53 83.64 £0.06 +5.23
D-CORAL + SP 23/80  99.98 +£0.01 99.90+0.09 96.52+0.12 96.22+0.05 +2.00  118/2538 100.00 9574 +£1.48 8333+037 8325+029 +4.84
BL (FP32) - - 99.81 £0.14 9536 +£0.36 94.32 +£0.59 - - - 98.81 +£0.73 80.01 £0.65 79.74 +0.19 -
D-CORAL - 99.92+0.03 99.78 +0.04 96.65+0.16 96.61 +0.12  +2.29 - 99.84 +£0.01 9834+0.38 8370+0.14 83.89 +0.22 +4.15
D-CORAL +LL 46/131  99.96 £0.01 99.84 £0.01 96.57£0.19 9631 +£0.11 +1.99 60/775 99.99 +£0.01 98.58 £0.36 83.29+043 83.11+048 +3.37
ResNet-50 D-CORAL + BIH 69/141 99.95+0.03 99.85+0.02 96414011 96.11+0.16 +1.79 261/775 99.98 +£0.02 98.69 +£0.26 82.86 £0.50 83.03+0.43 +3.29
(23.57TM) D-CORAL + VBlier1  79/231  99.99 £0.01 99.89 £0.02 96.61 £0.10 96.18 £0.26 +1.86  304/775 99.99 99.02+0.21 8359+046 83.00+0.17 +3.26
D-CORAL + VBI 130/131  99.99 +0.01  99.96 +0.01 96.56 +0.12 96.50 + 0.18  +2.18 741/775 99.98 +0.02 99.57 +0.14 8296 +0.23 82.87+0.07 +3.13
D-CORAL + DDN 131/131 9997 £0.04 99.97 £0.04 96.61 £0.27 96.35+0.12 +2.03 7751775 99.98 £0.01 99.98 +£0.01 83.29+0.42 83.03+0.07 +3.29
D-CORAL + SP 17/131  99.97 £0.01 99.82+0.01 96.61 £0.22 96.30+0.15 +1.98 45/775 99.99 +£0.01 98.58 +0.35 83.00+0.19 83254032 +3.51
BL (FP32) - - 99.96 £ 0.06 97.66 +0.13 97.15 £0.14 - - - 99.88 +0.08 86.63 £0.73 86.88 + 0.46 -
D-CORAL - 99.97 £0.01 99.95+0.01 9821+0.08 97.76+0.14 +0.61 - 99.72+£0.11 99.62+0.14 87.73+0.59 87.36+0.57 +0.48
D-CORAL +LL 3/9 100.00 99.98 98.14 £0.09 97.82+£0.08 +0.67 17/54 99.95 +0.05 99.87 £0.01 88.05+0.22 87521045 +0.64
EffNetV2-M D-CORAL + BIH 6/9 100.00 99.99 +£0.01 98.204+0.09 97.82+0.09 +0.68 23/54 99.97 £0.05 9991 +0.09 87.96+0.32 88.00+0.10 +1.12
(52.99M) D-CORAL + VBleri 719 99.99 £0.01 99.99 +£0.01 98.18+0.11 97.82+0.12 +0.67 29/54 99.94 99.87 £0.05 88.00+0.03 87.77+0.06 +0.89
D-CORAL + VBI 8/9 99.99 +£0.01 9999 +0.01 98.13+0.12 97.80+0.04 +0.65 46/54 99.95+0.01 99.88+0.04 88.09+0.18 87.76+0.16 +0.88
D-CORAL + DDN 9/9 100.00 100.00 98.18 £ 0.09 97.86 + 0.06 +0.71 54/54 99.92 +0.04 99.92 +0.04 8798 +0.18 87.81 +0.10 +0.93
D-CORAL + SP 419 99.99 99.98 98.13 £0.05 9770 £0.12 +0.55 18/54 99.95+0.03 99.87 £0.07 87.85+0.04 87.89+0.19 +1.01

Table 6. Accuracy (%) of quantized (Int8) ResNets of various sizes obtained after applying PTSQ on its baseline, and the accuracy of Int8

ResNets using our approach.

CIFAR-10 CIFAR-100
Model Approach - - - -
Corr. rate T’ Train Valid A Acc  Corr. rate T Train Valid Test A Acc
BL (FP32) - - 99.61 £0.56 93.73+043 9329 +0.37 - - 99.00 £ 1.19  76.84 £ 0.12 77.04 +0.08 -
BL (INTS8) - 98.08 £ 0.71 93.01 £0.56 92.4240.17 - 96.74 £3.02 7545+ 1.29 76.06 +0.94

ResNet-18  D-CORAL

99.93 £0.01 9923 £0.05 95.30+0.39 9518 +£0.09 +2.76

99.52+0.14 96.674+0.56 79.15+0.53 79.15+0.26 +3.09

D-CORAL +BIH  158/736  99.99 £0.01 99.46 £0.04 9553+029 9548 +0.18 +3.07 300/1966 99.98 £0.02 97.36+£0.55 79.25+0.30 79.53+0.58 +3.47

D-CORAL + SP 128/736 100.00 99.48 +0.02 9546+0.20 95.294+0.06 +2.93  189/1966 99.98 +0.01 97.31 +0.66 79.27+0.73 79.79 049 +3.73
BL (FP32) - - 99.43+0.67 9471 +0.05 94.22 4+ 0.06 - - 9436 +2.24 78.124+0.79 78.41+0.10
BL (INTS8) - - 98.16 £ 0.35 93.63+0.10 93.36 4 0.09 - - 90.324+2.30 76204039 77.134+0.45

ResNet-34  D-CORAL -

99.92+£0.04 9931 £0.17 96.19£0.10 96.08 £0.20 +2.72 -

99.44 +£0.55 92594033 81.894+0.63 81.944+045 +4.81

D-CORAL +BIH  250/771  99.97 £0.02 9939 £0.12 9629 +0.08 96.05+0.07 +2.69 689/4607 99.99+0.01 93.77+0.33 82.194+0.14 82.18+0.20 +5.05

D-CORAL + SP 272/771 9995 +£0.05 99.45+0.05 9625+0.06 9583+0.19 +2.47 479/4607 100.00

93.554+0.53 81.994+0.24 82.124+0.20 +4.99

our original approach, the accuracy of the original network
on 7" reaches 100% when considering only the successfully
perturbed samples and the original correctly detected sam-
ples. Inspired by [34], we can view T” as an easy dataset,
given its 100% accuracy, while considering 1" as a hard
dataset. As shown in Tab. 7, the variant approach results in a
smaller performance improvement compared to our original
method. This decline may be due to adversarial perturbations
increasing the loss rather than decreasing it for uncorrected
inputs, leading to a negative impact relative to the baseline.
From this, we conclude that only the corrected input samples
should be retained.

Table 7. Accuracy (%) of ResNet FP32 baselines after applying
our approach using the LL attack to generate adversarial domains
for CIFAR datasets. Note that “D-CORAL + LL (V)” is a variant
approach in which 75 in Step 3 incorporates all perturbed samples
of T.

CIFAR-10 CIFAR-100
Model Approach
#T’ Test #T' Test

BL (FP32) - 93.32 - 77.09
ResNet-18 D-CORAL +LL 44,972 95.77 (+2.45) 44,879  80.48 (+3.39)

D-CORAL +LL (V) 45,000 95.51 (+2.19) 45,000 79.56 (+2.47)

BL (FP32) - 94.24 - 78.53
ResNet-34 D-CORAL +LL 44,993 96.36 (+2.12) 42,903 82.76 (+4.23)

D-CORAL +LL (V) 45000  96.18 (+1.94) 45,000  80.81 (+2.28)




B.3. Adversarial Correction with Longer Domain
Adaptation Process

Figure 5 demonstrates the performance of our pipeline on the
training, validation, and test datasets of CIFAR-100 using
ResNet-34. By applying Deep CORAL, we add an extra loss
term (i.e., CORAL loss), which helps reduce overfitting by
acting as a regularizing term. This approach is less likely to
overfit compared to training the baseline model.
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Figure 5. This graph shows our pipeline training, validation, and
test accuracy with the DDN attack using (a) the ResNet-34 model
on the CIFAR-100 dataset and (b) the TinyVit-21M model on the
ImageNet-1K. The accuracy results are averaged over three random
seeds.

B.4. Adversarial Correction vs. Adversarial Train-
ing

While there are similarities in our approach and adversarial
training, there are significant differences. Adversarial train-
ing takes training set images which the network classifies
correctly and alters (attacks) these images so that the net-
work gives the wrong answer. These images, with the correct
label, are used to augment the training set. Our approach, on
the other hand, takes training set images which the network
classifies incorrectly, and alters (attacks) these images so that
the network gives the right answer. Instead of augmenting
the training set with these examples, we replace the initially
wrong images with the adversarially corrected images. The
advantage of our approach is that it improves accuracy as

compared to standard adversarial training, since we are pro-
viding guidance for the network on how to do better on
images it had trouble with. However, both approaches, as
shown in the paper, provide robustness to adversarial attacks.

B.S. Adversarial Correction Against Noisy Labeled
Datasets

We investigate the performance of our AdCorDA approach
under 20% symmetrical noisy labeled setting on CIFAR
datasets. We first established new CIFAR baselines using
standard fine-tuning, then applied our AdCorDA approach.
Table 8 compares the performance of our approach using
ResNet-34 on CIFAR datasets with and without noisy labels.
The results demonstrate that our approach remains highly
effective under noisy label settings, outperforming the noisy
CIFAR-10 baseline by 4.77% in the DA-only case and the
noisy CIFAR-100 baseline by 8.77% in the DDN attack case.

Table 8. Accuracy (%) of baseline and our AdCorDA approach
with Deep CORAL on CIFAR datasets using ResNet-34 with and
without 20% noisy labels.

Dataset Approach Corr. Rate Train Test
BL (FP32) - 76.26 91.07
CIFAR-10-noisy D-CORAL - 78.98 95.84 (+4.77)

D-CORAL + DDN  10685/10685  78.22 93.40 (+2.33)
BL (FP32) - 72.92 72.77
CIFAR-100-noisy ~ D-CORAL - 75.07 81.31 (+8.54)
D-CORAL + DDN  12188/12188  77.40 81.54 (+8.77)
BL (FP32) - 99.43 94.22
CIFAR-10 D-CORAL - 99.81 96.40 (+2.18)
D-CORAL + DDN  80/80 100.00  96.71 (+2.49)
BL (FP32) - 94.36 78.41
CIFAR-100 D-CORAL - 95.26 82.98 (+4.57)
D-CORAL + DDN  2538/2538 99.97 83.64 (+5.23)

C. Visualization of Adversarial Correction and
Attacks

C.1. Visualization of Adversarial Attacks

In recent years, there has been an increasing amount of re-
search aimed at developing techniques to deceive neural
networks. These techniques, known as adversarial attacks,
involve making malicious yet subtle changes in the input
to fool the network [5, 14, 21, 22, 29]. Adversarial attacks
make malicious yet subtle changes in the input to fool the
network, as shown in Fig. 7. These changes are often imper-
ceptible to the human eye, making it difficult to distinguish
between the original image and the adversarially altered one.
Our adversarial correction approach, on the other hand, takes
training set images which the network classifies incorrectly,
and alters (attacks) these images so that the network gives
the right answer. Similarly, the differences between the mis-
classified image and the corrected image are not visually
noticeable (see Fig. 9).
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Figure 7. Subplots (a)-(d) show misclassified images of a speaker from the Amazon domain by ResNet-50 under C&W, DF, and PGD
adversarial attacks. Subplots (e)-(h) show the corresponding perturbations generated under attacks, magnified by a factor of 500.
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Figure 9. Subplots (a)-(c) show misclassified images of a trunk from the CIFAR-10 dataset by ResNet-34 and its corrected images under
DDN and Salt and Pepper noise attacks. Subplots (d)-(f) show the corresponding perturbations generated under adversarial correction,

magnified by a factor of 1000.

C.2. Grad-CAM Visualization of Adversarial Cor-
rection

To help visualize the impact of the adversarial correction
technique on misclassified images, we employ Gradient-
weighted Class Activation Mapping (Grad-CAM) [33] to
provide visual explanations. Grad-CAM utilizes gradient-
based localization to identify important regions in an image
that contribute to the prediction of the model concept. In
our study, Fig. 10a is an example initially misclassified as
“automobile” by ResNet-34. However, applying the DDN
attack, the image can be correctly identified as a “horse”. To
better understand the differences between the Grad-CAM

of the original (Fig. 10c) and its corrected image (Fig. 10d),
we present a visualization in Fig. 10b. This visualization
clearly illustrates that incorrect detection was primarily influ-
enced by the contextual information surrounding the object
rather than the object itself, demonstrating that by modify-
ing the contextual information surrounding the image using
adversarial attack, correct classification becomes possible.

D. Experiments Setup (Extension)

The efficiency of our method is evaluated on the basis of
the reconstructed baseline result. The data transformation
strategy we use in the data loading process should match
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Figure 10. Evaluation of ResNet-34 on CIFAR-10 dataset. (a) misclassified images, (b) the difference between the Grad-CAM images for
the original and adversarially corrected inputs using DDN attack. This illustrates the shift in focus of the network for the two images, (c) the
Grad-CAM image for the original incorrect image, (d) the Grad-CAM image for the adversarially corrected image.

the pre-trained model to produce the same result. In our
experiments, we find that including random crops in data
transformation can cause problems when applying adversar-
ial attacks. Since random crop cuts a random region of the
image, it causes the image we want to attack to differ from
the original image. This can cause unsuccessful attacks and
unstable performance of our method. It is worth mentioning
that we need to shuffle the dataset 7" before conducting do-
main adaptation training. This ensures a mixture of training
samples, including those from the original dataset for which
the trained network gets the correct answers and the incorrect
samples successfully perturbed.

In detail, we shuffle datasets before applying random
crops and save the coordinates of the random crop regions
in a file with the order of images in the training dataset if
a random crop is included in the transformation process.
For the correct dataset (a subset of the train dataset with
correct predictions), we reload the random crop file and
apply the recorded random crops in the domain adaptation
training step. The correct dataset indices are saved following
the order of the train dataset when we generate the model
baseline so we can use these indexes to obtain random crop
regions for the correct dataset. For the incorrect dataset (a
subset of the train dataset predicted as incorrect) that needs
to be attacked, we use the same strategy to obtain random
crop indexes and apply them to images before applying
attacks. Then we check the correction rate by comparing the
labels before and after the attack to ensure that the labels are
different. We also test the prediction of our baseline model
on the correct dataset and altered dataset (incorrect dataset
processed with attack). The accuracy for the correct dataset
should be 100% and the accuracy for the altered dataset
should be near 100% while using the DDN attack.

In the domain adaptation training step, we load the file
only based on the current batch size. To be more precise, in
the domain adaptation training, for each step, when the index
is in the correct index list, the source image, target image,

and source label are just the data from the train dataset.
When the index is in the incorrect index list, the source
image and source label processed with attacks should be
taken from the altered dataset, and the target images are
taken from the train dataset.

Memory overflow is another problem we face in the do-
main adaptation step. The loading of the entire file that
stores all the attacked images can take a significant amount
of memory, especially when the dataset is extremely large,
such as ImageNet-1K. Therefore, we individually save these
images into a .npz file, containing one attacked image and
its correct label. Then, we design a customized dataloader
that loads the correct images and the altered images as our
source dataloader.

E. Consumption of Computing Resources

The adversarial correction process does take some time, but
it’s not as long as the training time. The computer resources
needed to reproduce our experiment results are summarized
in the Tab. 9. For large datasets, if we assume the per-
formance decreases on larger datasets, we will have more
corrections to do. However, the increase in time is expected
to be near linear or slightly more than linear, not quadratic.



Table 9. Compute resources used for each dataset with a batch size of 16. The resources and time may vary slightly depending on the
selected model. Note that BL refers to baseline training, AC to adversarial correction, DA to the domain adaptation stage without adversarial
correction, and DA+AC to domain adaptation with adversarial correction.

CPU GPU
Dataset Experiment Computing Time
Number Memory (GB) Cores Number Memory (GB) Type
BL 1 3 32 1 2 V100 2.0 min/epoch
AC 1 3 32 1 2 V100 0.4 min/batch
CIFAR-10 DA 1 15 » 1 2 V100 1.2 minfepoch
DA + AC 1 20 32 1 2 V100 1.2 min/epoch
BL 1 3 32 1 2 V100 2.5 min/epoch
AC 1 3 32 1 2 V100 0.5 min/batch
CIFAR-100 DA 1 15 32 1 2 V100 1.5 min/epoch
DA + AC 1 20 32 1 2 V100 1.5 min/epoch
BL 1 5 32 1 2 V100 12 min/epoch
AC 1 30 32 1 2 V100 0.5 min/batch
CINIC-10 DA 1 38 32 1 2 V100 6 min/epoch
DA + AC 1 40 32 1 2 V100 15 min/epoch
AC 1 125 32 1 40 A100 0.2 min/batch
ImageNet-10 DA 1 125 32 1 40 A100 3 min/epoch
DA + AC 1 125 32 1 40 A100 4 min/epoch
AC 1 125 32 1 40 A100 0.2 min/batch
ImageNet-100 DA 1 125 32 1 40 A100 20 min/epoch
DA + AC 1 125 32 1 40 A100 20 min/epoch
AC 1 40 32 1 12 V100 1 min/batch
ImageNet-1K DA 1 45 32 1 12 V100 300 min/epoch

DA + AC 1 50 32 1 12 V100 300 min/epoch




