Scaling Open-Vocabulary Action Detection

Supplementary Material

In this supplementary we provide the following additional
technical details which were not included in the main paper:

* Architecture
 Configuration for Training and Evaluation
* Weak-supervision Implementation

In addition, we also provide more qualitative results on
the datasets used for our benchmarks, as well in-the-wild
qualitative results from random videos of various sources to
demonstrate the practicality of our model for downstream
applications.

1. Model Architecture

We initialize our video encoder and text encoder from
ViCLIP-B16 [16], pretrained on large-scale video-text pairs
from InternVid-10m-FLT [16].

1.1. Video Encoder

In our proposed approach, the standard [CLS] token used
in the video encoder is removed, and 100 trainable [DET]
tokens are introduced into the input sequence. These [DET]
tokens are processed within the encoder to perform detection
tasks. To support this functionality, we incorporate two
additional Multi-Layer Perceptrons (MLPs) at the end of the
vision encoder: one dedicated to human classification and
the other to bounding box regression. Furthermore, the final
projection layer of the video encoder, originally designed for
the [CLS] token, is repurposed for the [DET] tokens. This
projection layer benefits from the pretraining on InternVid-
10m-FLT, enabling it to generate action embeddings directly
from the [DET] tokens.

To accommodate input sequences of variable lengths,
online interpolation is applied to the spatial positional em-
beddings associated with the [PATCH] tokens. Similarly,
the temporal positional embeddings from the InternVid-10m-
FLT pretrained weights are interpolated to extend from 8 to
9 frames. For action classification, cosine similarity (.5) is
computed between L2-normalized action embeddings and
text embeddings, measuring the likelihood of an action oc-
curring. To enhance numerical stability during training,
we introduce a learnable temperature parameter (7") and
a bias parameter (b), resulting in the final logits calculation:
ltina = eTS + b. The temperature parameter is initial-
ized at log( 5+ ), and the bias parameter is initialized at 0.
Importantly, both 7" and b are removed during inference.

For ablations using the [PATCH] token regression scheme
introduced by OWL-ViT [11], we follow BMViT [13] by
temporally average pooling the [PATCH] tokens at the output
of the video encoder from (B, T, Ngeq) to (B, Nseq), where

Table 1. Total number of parameters and number of trainable
parameters in each model, in millions (m). After introducing 100
[DET] tokens, regression MLPs, and LoRA for the text encoder, our
model shows only a 2-3% increase in total parameters compared to
the original model.

Model # params (m)

Text Trainable Total
ViCLIP-B16 [16] - 149.604 149.604
SiA-B16 Frozen 88.721 152.126
SiA-B16 LoRA 89.212 152.617

Table 2. Training Hyperparameters

Optimizer Adam
Learning Rate  107°
51,62 0.9, 0.999
Number of Frames 9
Input Video Height, Width 240, 320
Sampling Rate (AVA/AVA-K) 8
Sampling Rate (UCF-101-24) 7
Sampling Rate (MultiSports) 7
Sampling Rate (UCF-MAMA) 4

B, T and N4 represent the batch size, number of frames in
the input video clip and the input sequence length per frame.

1.2. Text Encoder

LoRA modules [6] are applied on the multi-layer perceptron
(MLP) in each text encoder block for all input tokens.

2. Training and Evaluation Configuration

Training hyperparameters are outlined in table 2.

Input video clips are sampled from their original videos
with 9 frames x sampling rate, centered around the
keyframe.

Given that the 25 fps videos from JHMDB have between
16-40 frames, we do not fix a sampling rate for them. Instead,
frames are uniformly sampled from each video; atomic ac-
tions (e.g. jump) in JHMDB are guaranteed to happen at the
start and stop at the end, temporally trimming these videos
would remove essential temporal information, and the atomic
action cannot be accurately determined (e.g. jump), espe-
cially when performing inference in a downstream manner
from AVA-Kinetics pretraining.

2.1. Simulating federated training

For each training batch, instead of passing every single avail-
able action class, only a list of ground-truth actions present
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Figure 1. Visualization of Bipartite Matching Loss for our model.
For predicted triplets that are matched with the BG, only the actor
loss is calculated.

in that batch is gathered and each action is assigned an in-
teger label. Action loss is calculated based on these integer
label assignments. The integer label assignments may vary
for each batch.

Algorithm 1 Training loop to simulate federated training

for Batch in Dataloader do
Videos, Annotations = Batch
ActionsList = collectAllActions(Annotations)
ActionToldx = allocateIndices(ActionsList)
for anno in Annotations do
anno{labels} = ActionToldx(anno{textlabels})
end for
ActionDescList = Sample1Descriptor(ActionsList)
outputs = Model(Videos, ActionDescList)
loss = lossFunc(outputs, Annotations)
Calculate Gradients and Update Model Weights
end for

2.2. Bipartite Matching Loss

Following prior works in transformer-based detection archi-
tectures [2—4, 13, 14, 17, 18], we use bipartite matching
loss to train our model. The loss function has 2 stages: (1)
Hungarian matching, and (2) Loss calculation.

The first stage involves matching NN triplet predictions of
the model to the optimal M ground truth objects. Given that
the model has more predictions than the number of ground
truth objects (N > M), an extra background (BG) class is
introduced to match non-predictions with the background
class to denote that there is no object in those predictions.
The Hungarian matching step minimizes the following cost
for a set of predictions § = {7, }}¥.; and ground truth objects

Y= {yj}jM=1:

N
0 = argmin Z Cmatch(yi7 ga(i))
ceG N i—1
where:
e Gy is the set of all permutations of N elements.
* Cratch (¥4, Uo(i)) is the matching cost between the ground
truth y; and the predicted object g, ;, defined as:

Cinaten (Yis Yo (1)) = W {ci=¢,)) T -BBox(bi, i)a(i)>

Here:

— ¢; and ¢, ;) are the class labels of the ground truth and
prediction, respectively.

— b; and l;g(l-) are the bounding box coordinates.

— BBox represents the Intersection over Union (IoU) cost
summed with the L1-distance cost between predicted
boxes and ground truth boxes.

The permutation 6 minimizes the total cost. In our im-
plementation, we only use actor scores and bounding box
coordinates to perform the matching following TubeR [18],
since the only object of interest is the human figure (and the
background).

For the second stage, we compute 3 losses: CE,tor,
Eboz and CEaction where CEacto’r" L:box and CEaction rep-
resent the actor classification loss, bounding box loss (IoU
loss + L1 loss), and action classification loss, respectively.
For CE,t0r, we calculate the loss for every single triplet
matched with the correct humans and the BG, whereas for
Loz and C'Ey.50n, We calculate the losses only for triplets
that are matched with humans; triplets that are matched with
the BG class are ignored as shown in Figure 1.

2.3. Multi-label training with Softmax-based Cross-
Entropy

We use softmax-based cross-entropy for our action classi-
fication loss C'Eqction. The nn.CrossEntropy() imple-
mentation in PyTorch allows the use of n-dimensional vec-
tors containing class probabilites (which do not necessar-
ily need to sum to 1) instead of one integer representing
one ground-truth class. We exploit this feature to utilize
nn.CrossEntropy() in a multi-label manner.

For example, if the predicted probability of actions (after
softmax) for a [DET] token is [0.25,0.25,0.25,0.25] and
the multi-label ground-truth is [2, 3], after one-hot encoding,
the ground truth label becomes [0, 0, 1, 1]. After backprop-
agation, the prediction (after softmax) is expected to be
[0.1,0.1,0.4,0.4].

We do not use sigmoid-based losses given that ViCLIP
is pretrained with softmax-based cross-entropy; our model
does not generalize to downstream datasets when sigmoid-
based losses are used to finetune the original ViCLIP weights
(e.g. binary cross-entropy, sigmoid-focal cross-entropy

[10D.
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Figure 2. Visualization of AWS for our model. We only assign
the Kinetics-700 action to the Hungarian-matched ground truth
annotation if the assigned prediction detects the associated Kinetics-
700 action to be positive. BG denotes the background class.

Table 3. Number of floating point operations (in GFLOPs) relative
to the number of [DET] tokens in the video encoder. 0* indicates
that the [PATCH] token regression scheme is used.

# [DET] Tokens GFLOPs

125 780.78
100 771.20
75 761.64
50 752.14
0* 734.70

2.4. Multi-label Evaluation

Multi-label predictions are obtained by thresholding the co-
sine similarity at 0.25. Although the full-range of cosine-
similarity values are between -1 and 1, ViCLIP, as well as
our model, would yield cosine-similarity values roughly be-
tween the range of 0 and 0.5. Based on this observation, we
empirically choose 0.25 as our threshold.

3. Details on Assignment-based Weak Supervi-
sion (AWS)

For AWS, we first use our model trained on AVA-Kinetics an-
notations augmented with Naive Weak Supervision (NWS).
Subsequently, for each Kinetics-700 video in AVA-Kinetics,
we predict the associated Kinetics-700 action for all humans
in that video and use Hungarian matching to assign the pre-
dicted human box to the ground truth box; the Kinetics-700
action is only appended to the ground truth box if the as-
signed predictions detect the said Kinetics-700 action to be
positive as shown in Figure 2. We use the same cost function
from the bipartite matching loss used to perform assignment.

4. Computational Complexity

In Table 3, we observe that adding more [DET] tokens in-
creases the computational complexity in the video encoder.

However, the relative increase compared to the model us-
ing the [PATCH] token regression scheme (0 [DET] tokens)
is minimal, as the main bottleneck is the inefficient nature
of the Type-1 ViViT used by ViCLIP [16], which is the
least efficient ViViT out of the 4 versions introduced in [1].
Nevertheless, we elect to adapt this version as pretraining an-
other video-language model on InternVid [16] from scratch
with a different video backbone is too resource-intensive and
time-consuming.

5. Additional Qualitative Results

We show additional visualizations from AVA [5], UCF101-
24 [15], JHMDB [7], MultiSports [9] and UCF-MAMA
[12] from our model in Figures 3, 4, 5, 6 and 7 trained
on AVA-Kinetics [8] and using the assignment-based weak
supervision scheme (AWS) to cover more than 700 action
classes. Red boxes/labels denote the ground truth and green
boxes/labels denote out the output of our model.

6. Qualitative Results in the Wild

We show a few visualizations in Figure 8 using videos from
various sources other than AVA, UCF101-24, JHMDB, Mul-
tiSports or UCF-MAMA, showcasing the practicality of our
model in the wild without the need for collecting videos, an-
notating and training with desired actions.
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Figure 5. Additional Visualizations from JHMDB: Our model is able to detect passive actions (e.g. stand, sit, walk) that are happening
concurrently with the annotated ground truth actions. This observation signifies the need for better annotations, or a better evaluation scheme
for open-vocabulary action detection.
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Figure 6. Additional Visualizations from MultiSports: Our model is able to detect the sport, but not the associated fine-grained action in
each sport. In addition, our model fails at detecting long-range humans. The predicted actions in row 3 (football) and row 4 (basketball) are
removed for cleaner visualizations since all the fine-grained actions in both sports are detected as positive by our model.
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Figure 7. Additional Visualizations from UCF-MAMA: Our model fails at detecting long-range humans as well as people in crowded
scenes. Actions are removed for cleaner visualization.

. T

0 person)

Figure 8. Additional Visualizations from select Youtube Videos: Our model, having seen more than 700 action classes during training, can
be used in the wild with any actions as textual inputs without training, a significant departure from prior works in action detection that are
predominantly closed-set, limiting their practicality.

Hsuan Yang. Vidt: An efficient and effective fully transformer- [18] Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Shuai Bing,

based object detector. arXiv preprint arXiv:2110.03921, 2021. Mingze Xu, Chunhui Liu, Kaustav Kundu, Yuanjun Xiong,

2 Davide Modolo, et al. Tuber: Tubelet transformer for video
[15] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. action detection. arXiv preprint arXiv:2104.00969, 2021. 2

Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 3

[16] Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin
Ma, Xinhao Li, Guo Chen, Xinyuan Chen, Yaohui Wang, et al.
Internvid: A large-scale video-text dataset for multimodal un-
derstanding and generation. arXiv preprint arXiv:2307.06942,
2023. 1,3

[17] Tao Wu, Mengqi Cao, Ziteng Gao, Gangshan Wu, and Limin
Wang. Stmixer: A one-stage sparse action detector. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14720-14729, 2023. 2



	Model Architecture
	Video Encoder
	Text Encoder

	Training and Evaluation Configuration
	Simulating federated training
	Bipartite Matching Loss
	Multi-label training with Softmax-based Cross-Entropy
	Multi-label Evaluation

	Details on Assignment-based Weak Supervision (AWS)
	Computational Complexity
	Additional Qualitative Results
	Qualitative Results in the Wild

