ORXE: Orchestrating Experts for Dynamically Configurable Efficiency

Supplementary Material

A. Details of the Configuration Searching

A.1. Searching Process

The configuration search is formulated as an optimization
problem. The objective function Eq. (2) is not deriva-
tivable, but we can still optimize it. Multiple methods can
be used. In this paper, we use the procedure described in
Algorithm 1. This searching method starts with an empty
config, i.e. t2x = 1p,,,—1. It takes multiple rounds to
modify the configuration. In each round, it will try to make
modifications on every node, but only the best modification
is adopted at the end of this round. Each modification at-
tempt means minimizing the objective function w.r.t. a sin-
gle element of t5 . Eq. (2) is convex w.r.t. every tgf)/\, we
prove this property in Sec. A.2. Therefore, this minimiza-
tion can be achieved by any convex optimization method.
After searching for the optimal t;), we can fix it and search
for the optimal t; , in the same way. The convergence anal-
ysis of t; » is more complicated but Eq. (2) is still empiri-
cally convex w.r.t. every tgl)/\ Even if Eq. (2) is not strictly
convex and the searching process may not converge to the
global minimum, the searching process can work well in
practice. Similar to the training process of a deep learning
model, converge to the global minimum on the training set
is not required and desired.

A.2. Convergence

When t) is fixed as zero, the objective function is written
as:

fltan) = (1= X) - Cost(ta n) +A- (1 — Perf(ta) (8
Where ta) € [0,1], X € [0,1] Although Cost(tz)
and Perf(t2) are not actually derivativable, we can still
analyze their derivatives. To prove that f has a minimum,
we firstly compute the partial derivative of f with respect to
(4)
5 as

dCost B dPerf
5, o5\

— (- ©)

At an extremum, the partial derivative with respect to tg)/\

must vanish.

PRI
Ity Oty Dty
dCost op
= (1-)\)- (0)5 - (e;"f (11)
ot ot
OPerf 11—\ (12)

dCost A

Algorithm 1: Searching to)

Input: The preference factor, A € [0, 1].
Output: Thresholds for all Gate 2,
to € [0, 1]Near 1,
1 Fixt; » =0p we search the threshold for

cop—19
gate 2 first.

2 Initialize t2 » = 1n,,,-1, i.€. all samples go to the
last by default.

3 Initialize object metric, fiin = f2(t2,)).
4 while True do

5 Candidate < None

6 fori=1— Ndo

7 {te, fe} < min, o) fa(tan)
8 if f. < fiin then

9 Candidate < (i, t.)

10 fmzn — fc

11 if Candidate is not None then
12 1, t. + Candidate

13 tél)/\ —tc

14 else

15 | break
Meanwhile, ggzzf; means slope of the cost - performance

curve. In general, when we add more resource to a sys-
tem, the performance will increase. However, due to the
marginal effect, the increase of performance per cost unit
will decrease. i.e.

0? Perf
9 Cost?

<0 (13)

This phenomenon is also verified by some research on the

. . ier JdPerf
scaling law of deep learning models. Addltlona(l'l)y, SO0t

is co when téi)/\ = 0 and approaching O when ¢, — oo.
Therefore, Eq. (12) has only one solution tg)x > t(zi)/\yopt,
which means f has and only has one global extremum.
Moreover, in our proposed system, we assume that every
expert is placed in order. Therefore, the later nodes always

have higher performance and more cost than the previous

ones. For every t() € t, y, the increase of t;l)A will always
make more samples processed by later experts. It means
more overall cost and better performance, hence:

0Cost OPerf

— >0, : (14)
) ot

Combining Egs. (9), (13) and (14), we have:

1-A 9 (4) (i)
Sx 7 81&({) <0, tax <12 opt
O Perf 1-) of 0.+ _ 40
a1 = X : f~ z = b = 15
0Cost 1)‘)\ dgéf,)x ?;‘ ?j))wpt (15)
_ i ;
> DY = at(z) > Oa t27)\ > t27>\,0pt
2,

f (tgz)/\) is decreasing first and then increasing at around
t;i))%opt. Therefore, f is convex at every dimension of ts j,
which means that the minimization of f with respect to t5 »

can converge to a global minimum.

B. Implementation Details

The ORXE metamodel consists of 20 models ranging from
small to large, selected from about 70 well-trained models
from timm[65]. For each selected model, we recorded pre-
dictions and confidence scores on the training set. Using the
aforementioned method, we generated configurations with
regularization coefficients & = 2.0, § = 0.2. The search
step was set to 0.01, resulting in 100 configurations, which
were then interpolated with a step of 0.001. Configurations
that were clearly suboptimal were removed. Hundreds of
configurations are available through this process. Tab. Bl
presents the complete version of Tab. 1, comparing ORXE
with state-of-the-art models. The ORXE metamodel con-
sistently demonstrates superior efficiency.

C. Speed Test on More Devices

As a supplement to Sec. 5.3, we further conducted speed
tests on more practical scenarios. ORXE can be dynami-
cally configurable while keeping better efficiency in most
cases. Fig. Cla shows the results on Raspberry Pi which
is a small edge device. The inference latency of the high
performance model is reduced by approx. 30% to 50% with
the ORXE metamodel. Fig. C1b shows the results on RTX
3090 with a batch size of 128. The batched input results in
dynamic batch sizes for the ORXE experts. Modern GPUs
support batched processing, allowing the input to utilize
more computing units. The proposed method still works in
this scenario and have good reduction on the high accuracy
model.

D. Energy Consumption Test

E. Efficiency in Exiting with Predicted Proba-
bility

The efficiency gains from orchestrating multiple models de-

pend on the accuracy of the gating mechanism. A poten-

tial concern here is the unreliability of model confidence

scores. Specifically, a sample that could have been cor-
rectly predicted by a larger model might be early exited

88%

. 80%
80%

8%

>
>p

L A Monolithic Models A Monolithic Models
~+— ORXE ~6— ORXE

T T 0% T T

0 500 1000 1500 0 2 4 6

Latency per img (ms) Latency per img (ms)

(a) Raspberry Pi, BS 1 (b) RTX 3090, BS 128

Figure C1. The speed test of ORXE and other models on Rasp-
berry Pi and GPU

due to a false positive confidence prediction by a smaller
model, thus leading to errors. However, such situations do
not occur frequently, especially at high confidence ranges.
Fig. E2 illustrates the difference in performance for early-
exited samples between smaller and larger models. As
shown in Fig. E2a, a smaller model can safely rely on its
confidence to select over 50% of the samples without any
performance loss compared to the larger model. In other
words, the larger model does not provide significantly bet-
ter predictions for these samples. A more extreme example
is combining a very small model with a much larger one,
where their FLOPs have 300x differences. Even in this sce-
nario, the smaller model can still effectively handle 40% of
the workload, introducing only about 1% additional error.
Therefore, gating errors do not impede the overall efficiency
gains achievable by the proposed system.

0.0%

~2.0% 4

A Accuracy

—4.0% 4

0% 20% 40% 60% 80% 100%
Percent of Early Exiting

(@) TinyViT21m[67] - BeiTjarge[44]

~2.0% 4

A Accuracy

—4.0% 4

T T T T
0% 20% 40% 60% 80% 100%
Percent of Early Exiting

(b) MobileNetVacony—m[45] - BeiTapge[44]

Figure E2. Accuracy difference on early exited samples

Table B1. The full table of the FLOPs analysis of ORXE with the comparison of the state-of-the-art models. Models with underscore are
employed as members of ORXE.

Model Acc FLOPs (G) Params (M) | timm[65] Checkpoint Name / ORXE Preference
ORXE 88.35% 453 516.3 A =0.995

ORXE 88.35% 42.5 516.3 A =0.994

BeiT grge[44] 88.34% 61.6 304.4 beitv2_largepatchl6.224.inlk_ft_in22k_inlk
ORXE 87.34% 10.3 815.6 A=0.793

CAFormerys4[73] 87.25% 239 211.9 caformer b36.sail_in22k_ft_inlk

ORXE 8691% 1.5 815.6 A =0.785

Hierapyge[51] 86.90% 1279 949.0 hiera_huge 224 .mae_inlk_ft_inlk
ConvNeXtV2,.[66] 86.74% 154 1523 convnextv2_ base.fcmae_ft_in22k_inlk
CAFormer,,,35[73] 86.44% 149 211.9 caformer m36.sail_in22k_ft_inlk

Swinygrge [40] 86.24% 349 265.0 swin_large patchd4_window7.224.ms_in22k_ft_inlk
Hierajqpge[51] 86.06% 45.6 949.0 hiera_large_224.mae_inlk_ft_inlk

ORXE 85.78% 5.1 1,064.5 A=0.739

ConvNeXtV2,4r4e[66] 85.77% 34.4 342.1 convnextv2_large.fcmae ft_inlk
CAFormersgs[73] 85.59% 10.2 211.9 caformer_s36.sail_in22k_ft_inlk
Hierapgseprus[51] 85.15% 14.6 168.6 hiera base plus 224.mae_inlk_ft_inlk
Swinpgse [40] 85.14% 16.0 187.7 swin base_patch4 window7.224 .ms_in22k_ft_inlk
Next-ViTpase[35] 85.05% 8.5 170.6 nextvit _base.bd_ssld_6m_inlk

ORXE 84.88% 3.5 704.2 A =0.552

TinyViT g [67] 84.84% 4.9 96.5 tinyvit_21m_224.dist_-in22k_ft_inlk
MaxViT 44 [56] 84.83% 45.6 352.1 maxvit_large_tf 224.inlk

MaxViTpgse[56] 84.80% 24.9 333.6 maxvit base tf 224.inlk

Next-ViTspq1[35] 84.75% 6.0 170.6 nextvit_small.bd_ssld_6m_inlk
HGNet-V2;5[8] 84.59% 6.5 170.6 hgnetv2 b5.ssld.stage2_ft_inlk
Hierapgse[51] 84.50% 9.9 168.6 hierabase_224.mae_inlk_ft_inlk
DaViTpase[13] 84.49% 16.5 333.6 davit_base

MaxViTg,q1[56] 84.34% 129 128.9 maxvit_small tf 224.inlk

DaViTgaul13] 84.01% 9.5 464.9 davit_small

XCiTgmaull5] 83.98% 21.1 96.5 xcit_small_ 12_p8.224.fb_dist_inlk

ORXE 83.90% 2.6 639.1 A =0.387

ConvNeXtV2,,,[66] 83.88% 4.5 152.3 convnextv2_tiny.fcmae_ft_in22k_inlk
Hierag,,q.u[51] 83.79% 8.3 949.0 hiera_small_224.mae_inlk_ft_inlk
EfficientFormerV2,[36] 83.53% 2.7 147.0 efficientformerv2_1l.snap.dist_inlk
MaxViTyin, [56] 83.35% 5.7 150.6 maxvit_tiny tf 224.inlk

Swing,qi[40] 83.25% 10.8 352.1 swin_small patchd4_window7.224.ms_in22k_ft_inlk
TinyViT; 1, [67] 83.20% 2.2 96.5 tinyvit_ 11m 224.dist_in22k_ft_inlk
EfficientViTy3[5] 83.14% 4.5 187.7 efficientvitb3.r224_inlk

ORXE 82.93% 1.7 793.5 A =0.289

Hierayn, [51] 82.74% 6.2 168.6 hiera_tiny_224.mae_inlk_ft_inlk
HGNet-V2,5[8] 82.74% 1.8 170.6 hgnetv2 b3.ssld. stage2_ft_inlk

ORXE 82.74% 14 636.1 A =0.242

DaViT iy [13] 82.72% 5.2 464.9 davit_tiny

XCiTiny[15] 82.61% 123 96.5 xcit_tiny 24 p8.224.fb dist_inlk
EfficientFormerV2,,[36] 82.16% 14 187.7 efficientformerv2_s2.snap-dist_inlk
ConvNeXtV2,,4,0[66] 82.05% 24 1523 convnextv2_nano.fcmae_ft_in22k_inlk
EfficientViTp2[5] 8191% 1.7 265.0 efficientvit b2.r224_inlk

ORXE 81.83% 1.2 1,092.0 A=0.192

Swinyin, [40] 80.90% 5.8 333.6 swin_tiny patch4 window7.224.ms_in22k_ft_inlk
ORXE 80.76% 0.6 787.5 A =0.142

TinyViT5,,[67] 80.73% 1.7 96.5 tiny_vit_5m.224.dist_in22k_ft_inlk
MobileNetV4yyprig—m[45] | 80.36% 1.2 342.1 mobilenetv4_hybridmedium.e500_r224_inlk
EfficientFormerV2,,[36] 79.69% 0.8 147.0 efficientformerv2_sl.snap.-dist_inlk
EfficientNety; [54] 79.41% 1.5 128.9 efficientnet bd4.ra2_inlk

EfficientViT,, [5] 79.10% 0.6 187.7 efficientvit.bl.r224_inlk

MobileNetV4 .y —m [45] 79.07% 0.8 41.4 mobilenetv4_convmedium.e500.r224_inlk
ORXE 7895% 0.4 257.7 A =0.200

EfficientNet,5[54] 78.64% 1.0 733.0 efficientnet b3.ra2_inlk

ResNet;52[24] 7824% 11.5 464.9 resnetl152.tv_inlk

EfficientNet, 2 [54] 77.89% 0.7 187.7 efficientnet b2.ra_inlk

EfficientNet;,[54] 77.71% 04 187.7 efficientnet b0.ra_inlk

EfficientNet,; [54] 7157% 0.6 187.7 efficientnet bl.ft_inlk

ResNet;;[24] 77.26% 7.8 333.6 resnetl0l.tv_inlk

EfficientViT,,,5[38] 77.08% 0.6 75.9 efficientvitm5.r224_inlk
EfficientFormerV2,,[36] 76.25% 0.4 342.1 efficientformerv2_ s0.snap_dist_inlk
ResNets0[24] 75.86% 4.1 352.1 resnet50.tv_inlk

MobileNetV3j4rge100[28] 75.78% 0.2 70.0 mobilenetv3_large_100.ra_inlk

ORXE 75.77% 0.2 115.3 A =0.054

EfficientViT,,; [38] 74.33% 0.3 759 efficientvitmd4.r224_inlk

MobileNetV4 .oy —s[45] 73.75% 0.2 45.4 mobilenetv4_conv_small.e2400.r224_inlk
EfficientViT,,5[38] 73.39% 0.3 75.9 efficientvitm3.r224_inlk

ResNet g, [24] 73.20% 3.7 352.1 resnet34.tv_inlk

EfficientViT[5] 71.36% 0.1 147.0 efficientvit_b0.r224_inlk
EfficientViT,,,2[38] 70.79% 0.2 759 efficientvitm2.r224_inlk

ResNet;g[24] 69.54% 1.8 352.1 resnetl8.tv_inlk

EfficientViT,,,; [38] 68.32% 0.2 75.9 efficientvitml.r224_inlk
MobileNetV3g,ai1100[28] 67.64% 0.1 344 mobilenetv3_small_100.lamb_inlk
EfficientViT,,,[38] 63.27% 0.1 759 efficientvitm0.r224_inlk

While improving reasoning throughput and reducing la-
tency, the proposed method also achieves a reduction in en-
ergy consumption. Tab. D2 presents the experimental re-
sults obtained on a Raspberry Pi, where the measured CPU
core energy consumption shows a substantial decrease com-
pared with baseline models of comparable accuracy.

Table D2. Energy consumption test on Raspberry Pi 5B

Largest Num inMem. Latency Core Energy
Model ACC Expert Experts Params (ms/img) (mWh/img)
BeiT-L 88.30% - 1 304.4M 1582 3.00
ORXE 88.20% BeiT-L 3 668.6M 782 1.42
ORXE 87.00% BeiT-L 3 668.6M 519 0.91
ConvNextV2-B 86.74% - 1 152.3M 815 1.32
Hiera-L 86.06% - 1 939.0M 1242 2.30
ORXE 86.00% BeiT-L 5 912.1IM 245 0.42
MobilenetV4-CM | 79.07% - 1 41.4M 52 0.10
ORXE 79.16% MobilenetV4-CM 2 117.3M 38 0.07

F. Training Confidence Estimators

For classification models, the output probability naturally
serves as an indicator of sample-level confidence. How-
ever, many models designed for other tasks do not inher-
ently provide confidence estimates for individual samples.
For instance, regression models typically output numerical
predictions without accompanying confidence scores. To
enable early exiting in models that do not natively provide
confidence estimates, an additional evaluator is required.
Such an evaluator can be trained to approximate sample-
level metrics. For example, in regression tasks, the evalu-
ator could be trained to predict the absolute error of model
outputs. Nevertheless, some metrics cannot be directly ob-
tained at the level of individual inputs. An illustrative case
is the mean average precision (mAP) metric used in ob-
ject detection, which is defined over an entire dataset rather
than individual samples. Furthermore, these metrics often
exhibit non-uniform distributions, and label imbalance can
lead to overfitting of the evaluator.

However, confidence measures used for early exiting do not
necessarily need to be strictly calibrated against specific
performance metrics. The primary goal of the early exit
routing is to distinguish samples by the difficulty. We hope
to divide the dataset by the score into two parts where the
prediction for one subset is better than the other one. Thus,
samples with more reliable predictions can exit from further
computation. Therefore, the confidence function Conf(-)
should ideally have:

(Conf(w1) > th A Conf(x2) < th)

= Metr(z1) > Metr(z2) o

le y L2,
Moreover, the threshold value should be arbitrary while
configuring the overall cost and performance. Hence, the

actual target of Conf(+) in a configurable early exiting sys-
tem is ideally to obtain the property of:

Conf(xz1) > Conf(z2)
\V/CC17./,1727 (17)
= Metr(z1) > Metr(z2)

Where Metr(z) represents the actual metric value of
model’s prediction on 2 and Conf (x) denotes the estimated

confidence value of that prediction.

Therefore, the target of Conf(-), which is expressed in
Eq. (17), is ranking samples by Metr(x;) rather than fit-
ting to it. Now the metric can be any value indicating the
relative prediction reliability of a sample, like the negative
loss value which is available in every supervised learning
task.

Ranking as Calibration Pairwise comparison is a sim-
ple but effective method to train neural networks to rela-
tive relationship. It asks models to compare arbitrary two
samples and learn to predict which one should rank higher.
With comprehensive training, the model will be able to pro-
duce appropriate score to every sample with a sorted rank-
ing. Concretely, we form @ pairs for a batch with B
samples. As described in Eq. (18), each pair between sam-
ple predictions ¢ and j is assigned with a label to denote
which prediction is better.

1 if Metr(xz;) > Metr(z;)
target; ; = 4 0.5 if Metr(x;) = Metr(x;) (18)
0 if Metr(z;) < Metr(z;)

Then the binary cross entropy loss is employed to guide
the model to match the relative order between the predicted
logit and the metric within a pair. Such a loss function is
only sensitive to the relative relationship but not the abso-
lute value of the metric. It simplifies the design of metric
value and also resolves the label imbalance issue.

B
L Z BCE(Gate(x;) — Gate(z;), target, ;)
i=1 j=i

_ 2
T B(B-1)
19)

Finally, the used confidence value is derived from the gate

output with a sigmoid transformation. The sigmoid function
does not change the relative order of its input, but limiting
the output to [0, 1] for the convenience of threshold search-
ing.

Conf (z) = Sigmoid(Gate(x)) (20)

Gates Architecture The purpose of early exiting is to
save computation. Therefore, the gate must be implemented
in a highly simple form to reduce the overhead to the sys-
tem. In this work, the gate is designed to be small MLPs. As
depicted in Fig. F3, the gate receives inputs from the model
backbone and the output. The feature from the backbone is
pooled for reducing its shape. The model output, subject to
the specific model, may need an embedding layer before en-
tering the MLP. Please refer the experiment section for the
specific design of the gate. The output of the MLP is a logit
value Gate(x) which is trained to express the ranking for
the prediction of the attached expert model on the sample
x.

Confidence Expert

Score Output
F L R)
| Orignal !
' Gate Model Head

@te : Expert*
Head

Figure F3. The gate architecture

G. Relation to EE and MoE

The proposed ORXE model can be viewed as a special case
of early exiting (EE) and top-1 mixture of experts (MoE).
However, there are fundamental differences between our
work and conventional EE and MoE.

In conventional EE systems, the model is partitioned into
multiple sequential segments, each augmented with an aux-
iliary head for intermediate predictions. Computation must
always begin from the first segment, deciding at each head
whether to proceed or stop further computation. In con-
trast, within ORXE, each segment functions as an inde-
pendent expert model; therefore, computation is not con-
strained to always start from the initial segment. During
routing, ORXE not only supports the standard EE decision-
making (continue or exit) but also enables very challenging
samples to bypass multiple intermediate experts directly.
Consequently, ORXE provides significantly greater flexibil-
ity compared to conventional EE methods. The comparative
results in Fig. 2b further demonstrate that ORXE achieves
higher efficiency than conventional EE approaches. Within
a MoE framework, the primary advantage of ORXE lies in
leveraging a subset of experts themselves to determine the
data routing path rather than a dedicated router. In con-
ventional Top-1 MoE systems, the routing decision is made
prior to invoking any experts. Consequently, the router must
possess sufficient complexity and capacity to accurately un-
derstand the relative strengths of various experts. Such a
router is computationally costly, especially in systems de-
signed explicitly for computational efficiency. In contrast,
ORXE adopts an approach where experts are selectively
used on-demand as implicit routers. This design eliminates
the additional computational overhead associated with ded-
icated routing modules. Furthermore, ORXE can be viewed
as employing a form of partial post-expert routing, inher-
ently providing greater accuracy compared to purely pre-
expert routing methods.

Unconfident >."'> Exit

— o

(a) Conventional Early Exit (b) ORXE’s equivalence in the context of Early Exit

Figure G4. Differences between ORXE and conventional EE

:
:
:

(a) Conventional Top-1 Mixture of Experts (b) ORXE’s equivalence in the context of Mixture of Experts

Figure GS5. Differences between ORXE and conventional Top-1 MoE

