
ORXE: Orchestrating Experts for Dynamically Configurable Efficiency

Supplementary Material

A. Details of the Configuration Searching
A.1. Searching Process
The configuration search is formulated as an optimization
problem. The objective function Eq. (2) is not deriva-
tivable, but we can still optimize it. Multiple methods can
be used. In this paper, we use the procedure described in
Algorithm 1. This searching method starts with an empty
config, i.e. t2,λ = 1Nexp−1. It takes multiple rounds to
modify the configuration. In each round, it will try to make
modifications on every node, but only the best modification
is adopted at the end of this round. Each modification at-
tempt means minimizing the objective function w.r.t. a sin-
gle element of t2,λ. Eq. (2) is convex w.r.t. every t

(i)
2,λ, we

prove this property in Sec. A.2. Therefore, this minimiza-
tion can be achieved by any convex optimization method.
After searching for the optimal t2,λ, we can fix it and search
for the optimal t1,λ in the same way. The convergence anal-
ysis of t1,λ is more complicated but Eq. (2) is still empiri-
cally convex w.r.t. every t

(i)
1,λ. Even if Eq. (2) is not strictly

convex and the searching process may not converge to the
global minimum, the searching process can work well in
practice. Similar to the training process of a deep learning
model, converge to the global minimum on the training set
is not required and desired.

A.2. Convergence
When t1,λ is fixed as zero, the objective function is written
as:

f(t2,λ) = (1− λ) · Cost(t2,λ) + λ · (1− Perf (t2,λ)) (8)

Where t2,λ ∈ [0, 1]N , λ ∈ [0, 1] Although Cost(t2,λ)
and Perf (t2,λ) are not actually derivativable, we can still
analyze their derivatives. To prove that f has a minimum,
we firstly compute the partial derivative of f with respect to
t
(i)
2,λ as

∂f

∂t
(i)
2,λ

= (1− λ) · ∂Cost
∂t

(i)
2,λ

− λ · ∂Perf
∂t

(i)
2,λ

(9)

At an extremum, the partial derivative with respect to t
(i)
2,λ

must vanish.

∂f

∂t
(i)
2,λ

= (1− λ) · ∂Cost
∂t

(i)
2,λ

− λ · ∂Perf
∂t

(i)
2,λ

= 0 (10)

⇒ (1− λ) · ∂Cost
∂t

(i)
2,λ

= λ · ∂Perf
∂t

(i)
2,λ

(11)

⇒ ∂Perf

∂Cost
=

1− λ

λ
(12)

Algorithm 1: Searching t2,λ

Input: The preference factor, λ ∈ [0, 1].
Output: Thresholds for all Gate 2,

t2,λ ∈ [0, 1]Nexp−1.
1 Fix t1,λ = 0Nexp−1, we search the threshold for

gate 2 first.
2 Initialize t2,λ = 1Nexp−1, i.e. all samples go to the

last by default.
3 Initialize object metric, fmin = f2(t2,λ).
4 while True do
5 Candidate← None
6 for i = 1→ N do
7 {tc, fc} ← min

t
(i)
2,λ

f2(t2,λ)

8 if fc < fmin then
9 Candidate← (i, tc)

10 fmin ← fc

11 if Candidate is not None then
12 i, tc ← Candidate

13 t
(i)
2,λ ← tc

14 else
15 break

Meanwhile, ∂Perf
∂Cost means slope of the cost - performance

curve. In general, when we add more resource to a sys-
tem, the performance will increase. However, due to the
marginal effect, the increase of performance per cost unit
will decrease. i.e.

∂2Perf

∂Cost2
< 0 (13)

This phenomenon is also verified by some research on the
scaling law of deep learning models. Additionally, ∂Perf

∂Cost

is ∞ when t
(i)
2,λ = 0 and approaching 0 when t

(i)
2,λ → ∞.

Therefore, Eq. (12) has only one solution t
(i)
2,λ > t

(i)
2,λ,opt,

which means f has and only has one global extremum.
Moreover, in our proposed system, we assume that every
expert is placed in order. Therefore, the later nodes always
have higher performance and more cost than the previous
ones. For every t(i) ∈ t2,λ, the increase of t(i)2,λ will always
make more samples processed by later experts. It means
more overall cost and better performance, hence:

∂Cost

∂t
(i)
2,λ

> 0,
∂Perf

∂t
(i)
2,λ

> 0 (14)



Combining Eqs. (9), (13) and (14), we have:

∂Perf

∂Cost


< 1−λ

λ ⇒ ∂f

∂t
(i)
2,λ

< 0, t
(i)
2,λ < t

(i)
2,λ,opt

= 1−λ
λ ⇒ ∂f

∂t
(i)
2,λ

= 0, t
(i)
2,λ = t

(i)
2,λ,opt

> 1−λ
λ ⇒ ∂f

∂t
(i)
2,λ

> 0, t
(i)
2,λ > t

(i)
2,λ,opt

(15)

f(t
(i)
2,λ) is decreasing first and then increasing at around

t
(i)
2,λ,opt. Therefore, f is convex at every dimension of t2,λ,

which means that the minimization of f with respect to t2,λ
can converge to a global minimum.

B. Implementation Details
The ORXE metamodel consists of 20 models ranging from
small to large, selected from about 70 well-trained models
from timm[65]. For each selected model, we recorded pre-
dictions and confidence scores on the training set. Using the
aforementioned method, we generated configurations with
regularization coefficients α = 2.0, β = 0.2. The search
step was set to 0.01, resulting in 100 configurations, which
were then interpolated with a step of 0.001. Configurations
that were clearly suboptimal were removed. Hundreds of
configurations are available through this process. Tab. B1
presents the complete version of Tab. 1, comparing ORXE
with state-of-the-art models. The ORXE metamodel con-
sistently demonstrates superior efficiency.

C. Speed Test on More Devices
As a supplement to Sec. 5.3, we further conducted speed
tests on more practical scenarios. ORXE can be dynami-
cally configurable while keeping better efficiency in most
cases. Fig. C1a shows the results on Raspberry Pi which
is a small edge device. The inference latency of the high
performance model is reduced by approx. 30% to 50% with
the ORXE metamodel. Fig. C1b shows the results on RTX
3090 with a batch size of 128. The batched input results in
dynamic batch sizes for the ORXE experts. Modern GPUs
support batched processing, allowing the input to utilize
more computing units. The proposed method still works in
this scenario and have good reduction on the high accuracy
model.

D. Energy Consumption Test

E. Efficiency in Exiting with Predicted Proba-
bility

The efficiency gains from orchestrating multiple models de-
pend on the accuracy of the gating mechanism. A poten-
tial concern here is the unreliability of model confidence
scores. Specifically, a sample that could have been cor-
rectly predicted by a larger model might be early exited

0 500 1000 1500

Latency per img (ms)

70%

73%

75%

78%

80%

82%

85%

88%

A
c
c
u
ra

c
y

Monolithic Models

ORXE

Monolithic Models

ORXE

(a) Raspberry Pi, BS 1

0 2 4 6

Latency per img (ms)

70%

73%

75%

78%

80%

82%

85%

88%

A
c
c
u
ra

c
y

Monolithic Models

ORXE

Monolithic Models

ORXE

(b) RTX 3090, BS 128

Figure C1. The speed test of ORXE and other models on Rasp-
berry Pi and GPU

due to a false positive confidence prediction by a smaller
model, thus leading to errors. However, such situations do
not occur frequently, especially at high confidence ranges.
Fig. E2 illustrates the difference in performance for early-
exited samples between smaller and larger models. As
shown in Fig. E2a, a smaller model can safely rely on its
confidence to select over 50% of the samples without any
performance loss compared to the larger model. In other
words, the larger model does not provide significantly bet-
ter predictions for these samples. A more extreme example
is combining a very small model with a much larger one,
where their FLOPs have 300x differences. Even in this sce-
nario, the smaller model can still effectively handle 40% of
the workload, introducing only about 1% additional error.
Therefore, gating errors do not impede the overall efficiency
gains achievable by the proposed system.

0% 20% 40% 60% 80% 100%
Percent of Early Exiting

4.0%

2.0%

0.0%

Ac
cu

ra
cy

(a) TinyViT21m[67] - BeiTlarge[44]

0% 20% 40% 60% 80% 100%
Percent of Early Exiting

4.0%

2.0%

0.0%

Ac
cu

ra
cy

(b) MobileNetV4conv−m[45] - BeiTlarge[44]

Figure E2. Accuracy difference on early exited samples



Table B1. The full table of the FLOPs analysis of ORXE with the comparison of the state-of-the-art models. Models with underscore are
employed as members of ORXE.

Model Acc FLOPs (G) Params (M) timm[65] Checkpoint Name / ORXE Preference
ORXE 88.35% 45.3 516.3 λ = 0.995
ORXE 88.35% 42.5 516.3 λ = 0.994
BeiTlarge [44] 88.34% 61.6 304.4 beitv2 large patch16 224.in1k ft in22k in1k
ORXE 87.34% 10.3 815.6 λ = 0.793
CAFormerb36 [73] 87.25% 23.9 211.9 caformer b36.sail in22k ft in1k
ORXE 86.91% 7.5 815.6 λ = 0.785
Hierahuge [51] 86.90% 127.9 949.0 hiera huge 224.mae in1k ft in1k
ConvNeXtV2base [66] 86.74% 15.4 152.3 convnextv2 base.fcmae ft in22k in1k
CAFormerm36 [73] 86.44% 14.9 211.9 caformer m36.sail in22k ft in1k
Swinlarge [40] 86.24% 34.9 265.0 swin large patch4 window7 224.ms in22k ft in1k
Hieralarge [51] 86.06% 45.6 949.0 hiera large 224.mae in1k ft in1k
ORXE 85.78% 5.1 1,064.5 λ = 0.739
ConvNeXtV2large [66] 85.77% 34.4 342.1 convnextv2 large.fcmae ft in1k
CAFormers36 [73] 85.59% 10.2 211.9 caformer s36.sail in22k ft in1k
Hierabaseplus [51] 85.15% 14.6 168.6 hiera base plus 224.mae in1k ft in1k
Swinbase [40] 85.14% 16.0 187.7 swin base patch4 window7 224.ms in22k ft in1k
Next-ViTbase [35] 85.05% 8.5 170.6 nextvit base.bd ssld 6m in1k
ORXE 84.88% 3.5 704.2 λ = 0.552
TinyViT21m [67] 84.84% 4.9 96.5 tiny vit 21m 224.dist in22k ft in1k
MaxViTlarge [56] 84.83% 45.6 352.1 maxvit large tf 224.in1k
MaxViTbase [56] 84.80% 24.9 333.6 maxvit base tf 224.in1k
Next-ViTsmall [35] 84.75% 6.0 170.6 nextvit small.bd ssld 6m in1k
HGNet-V2b5 [8] 84.59% 6.5 170.6 hgnetv2 b5.ssld stage2 ft in1k
Hierabase [51] 84.50% 9.9 168.6 hiera base 224.mae in1k ft in1k
DaViTbase [13] 84.49% 16.5 333.6 davit base
MaxViTsmall [56] 84.34% 12.9 128.9 maxvit small tf 224.in1k
DaViTsmall [13] 84.01% 9.5 464.9 davit small
XCiTsmall [15] 83.98% 21.1 96.5 xcit small 12 p8 224.fb dist in1k
ORXE 83.90% 2.6 639.1 λ = 0.387
ConvNeXtV2tiny [66] 83.88% 4.5 152.3 convnextv2 tiny.fcmae ft in22k in1k
Hierasmall [51] 83.79% 8.3 949.0 hiera small 224.mae in1k ft in1k
EfficientFormerV2l [36] 83.53% 2.7 147.0 efficientformerv2 l.snap dist in1k
MaxViTtiny [56] 83.35% 5.7 150.6 maxvit tiny tf 224.in1k
Swinsmall [40] 83.25% 10.8 352.1 swin small patch4 window7 224.ms in22k ft in1k
TinyViT11m [67] 83.20% 2.2 96.5 tiny vit 11m 224.dist in22k ft in1k
EfficientViTb3 [5] 83.14% 4.5 187.7 efficientvit b3.r224 in1k
ORXE 82.93% 1.7 793.5 λ = 0.289
Hieratiny [51] 82.74% 6.2 168.6 hiera tiny 224.mae in1k ft in1k
HGNet-V2b3 [8] 82.74% 1.8 170.6 hgnetv2 b3.ssld stage2 ft in1k
ORXE 82.74% 1.4 636.1 λ = 0.242
DaViTtiny [13] 82.72% 5.2 464.9 davit tiny
XCiTtiny [15] 82.61% 12.3 96.5 xcit tiny 24 p8 224.fb dist in1k
EfficientFormerV2s2 [36] 82.16% 1.4 187.7 efficientformerv2 s2.snap dist in1k
ConvNeXtV2nano[66] 82.05% 2.4 152.3 convnextv2 nano.fcmae ft in22k in1k
EfficientViTb2 [5] 81.91% 1.7 265.0 efficientvit b2.r224 in1k
ORXE 81.83% 1.2 1,092.0 λ = 0.192
Swintiny [40] 80.90% 5.8 333.6 swin tiny patch4 window7 224.ms in22k ft in1k
ORXE 80.76% 0.6 787.5 λ = 0.142
TinyViT5m [67] 80.73% 1.7 96.5 tiny vit 5m 224.dist in22k ft in1k
MobileNetV4hybrid−m [45] 80.36% 1.2 342.1 mobilenetv4 hybrid medium.e500 r224 in1k
EfficientFormerV2s1 [36] 79.69% 0.8 147.0 efficientformerv2 s1.snap dist in1k
EfficientNetb4 [54] 79.41% 1.5 128.9 efficientnet b4.ra2 in1k
EfficientViTb1 [5] 79.10% 0.6 187.7 efficientvit b1.r224 in1k
MobileNetV4conv−m [45] 79.07% 0.8 41.4 mobilenetv4 conv medium.e500 r224 in1k
ORXE 78.95% 0.4 257.7 λ = 0.200
EfficientNetb3 [54] 78.64% 1.0 733.0 efficientnet b3.ra2 in1k
ResNet152 [24] 78.24% 11.5 464.9 resnet152.tv in1k
EfficientNetb2 [54] 77.89% 0.7 187.7 efficientnet b2.ra in1k
EfficientNetb0 [54] 77.71% 0.4 187.7 efficientnet b0.ra in1k
EfficientNetb1 [54] 77.57% 0.6 187.7 efficientnet b1.ft in1k
ResNet101 [24] 77.26% 7.8 333.6 resnet101.tv in1k
EfficientViTm5 [38] 77.08% 0.6 75.9 efficientvit m5.r224 in1k
EfficientFormerV2s0 [36] 76.25% 0.4 342.1 efficientformerv2 s0.snap dist in1k
ResNet50 [24] 75.86% 4.1 352.1 resnet50.tv in1k
MobileNetV3large100 [28] 75.78% 0.2 70.0 mobilenetv3 large 100.ra in1k
ORXE 75.77% 0.2 115.3 λ = 0.054
EfficientViTm4 [38] 74.33% 0.3 75.9 efficientvit m4.r224 in1k
MobileNetV4conv−s [45] 73.75% 0.2 45.4 mobilenetv4 conv small.e2400 r224 in1k
EfficientViTm3 [38] 73.39% 0.3 75.9 efficientvit m3.r224 in1k
ResNet34 [24] 73.20% 3.7 352.1 resnet34.tv in1k
EfficientViTb0 [5] 71.36% 0.1 147.0 efficientvit b0.r224 in1k
EfficientViTm2 [38] 70.79% 0.2 75.9 efficientvit m2.r224 in1k
ResNet18 [24] 69.54% 1.8 352.1 resnet18.tv in1k
EfficientViTm1 [38] 68.32% 0.2 75.9 efficientvit m1.r224 in1k
MobileNetV3small100 [28] 67.64% 0.1 34.4 mobilenetv3 small 100.lamb in1k
EfficientViTm0 [38] 63.27% 0.1 75.9 efficientvit m0.r224 in1k



While improving reasoning throughput and reducing la-
tency, the proposed method also achieves a reduction in en-
ergy consumption. Tab. D2 presents the experimental re-
sults obtained on a Raspberry Pi, where the measured CPU
core energy consumption shows a substantial decrease com-
pared with baseline models of comparable accuracy.

Table D2. Energy consumption test on Raspberry Pi 5B
Model ACC

Largest
Expert

Num
Experts

in Mem.
Params

Latency
(ms/img)

Core Energy
(mWh/img)

BeiT-L 88.30% - 1 304.4M 1582 3.00
ORXE 88.20% BeiT-L 3 668.6M 782 1.42
ORXE 87.00% BeiT-L 3 668.6M 519 0.91
ConvNextV2-B 86.74% - 1 152.3M 815 1.32
Hiera-L 86.06% - 1 939.0M 1242 2.30
ORXE 86.00% BeiT-L 5 912.1M 245 0.42
MobilenetV4-CM 79.07% - 1 41.4M 52 0.10
ORXE 79.16% MobilenetV4-CM 2 117.3M 38 0.07

F. Training Confidence Estimators
For classification models, the output probability naturally
serves as an indicator of sample-level confidence. How-
ever, many models designed for other tasks do not inher-
ently provide confidence estimates for individual samples.
For instance, regression models typically output numerical
predictions without accompanying confidence scores. To
enable early exiting in models that do not natively provide
confidence estimates, an additional evaluator is required.
Such an evaluator can be trained to approximate sample-
level metrics. For example, in regression tasks, the evalu-
ator could be trained to predict the absolute error of model
outputs. Nevertheless, some metrics cannot be directly ob-
tained at the level of individual inputs. An illustrative case
is the mean average precision (mAP) metric used in ob-
ject detection, which is defined over an entire dataset rather
than individual samples. Furthermore, these metrics often
exhibit non-uniform distributions, and label imbalance can
lead to overfitting of the evaluator.
However, confidence measures used for early exiting do not
necessarily need to be strictly calibrated against specific
performance metrics. The primary goal of the early exit
routing is to distinguish samples by the difficulty. We hope
to divide the dataset by the score into two parts where the
prediction for one subset is better than the other one. Thus,
samples with more reliable predictions can exit from further
computation. Therefore, the confidence function Conf (·)
should ideally have:

∀x1, x2,

(
Conf (x1) > th ∧ Conf (x2) ≤ th

)
=⇒ Metr(x1) > Metr(x2)

(16)

Moreover, the threshold value should be arbitrary while
configuring the overall cost and performance. Hence, the
actual target of Conf (·) in a configurable early exiting sys-
tem is ideally to obtain the property of:

∀x1, x2,
Conf (x1) > Conf (x2)

=⇒ Metr(x1) > Metr(x2)
(17)

Where Metr(x) represents the actual metric value of
model’s prediction on x and Conf (x) denotes the estimated

confidence value of that prediction.
Therefore, the target of Conf(·), which is expressed in
Eq. (17), is ranking samples by Metr(x1) rather than fit-
ting to it. Now the metric can be any value indicating the
relative prediction reliability of a sample, like the negative
loss value which is available in every supervised learning
task.

Ranking as Calibration Pairwise comparison is a sim-
ple but effective method to train neural networks to rela-
tive relationship. It asks models to compare arbitrary two
samples and learn to predict which one should rank higher.
With comprehensive training, the model will be able to pro-
duce appropriate score to every sample with a sorted rank-
ing. Concretely, we form B(B−1)

2 pairs for a batch with B
samples. As described in Eq. (18), each pair between sam-
ple predictions i and j is assigned with a label to denote
which prediction is better.

target i,j =


1 if Metr(xi) > Metr(xj)

0.5 if Metr(xi) = Metr(xj)

0 if Metr(xi) < Metr(xj)

(18)

Then the binary cross entropy loss is employed to guide
the model to match the relative order between the predicted
logit and the metric within a pair. Such a loss function is
only sensitive to the relative relationship but not the abso-
lute value of the metric. It simplifies the design of metric
value and also resolves the label imbalance issue.

ℓ =
2

B(B − 1)

B∑
i=1

B∑
j=i

BCE(Gate(xi)−Gate(xj), target i,j)

(19)

Finally, the used confidence value is derived from the gate
output with a sigmoid transformation. The sigmoid function
does not change the relative order of its input, but limiting
the output to [0, 1] for the convenience of threshold search-
ing.

Conf (x) = Sigmoid(Gate(x)) (20)

Gates Architecture The purpose of early exiting is to
save computation. Therefore, the gate must be implemented
in a highly simple form to reduce the overhead to the sys-
tem. In this work, the gate is designed to be small MLPs. As
depicted in Fig. F3, the gate receives inputs from the model
backbone and the output. The feature from the backbone is
pooled for reducing its shape. The model output, subject to
the specific model, may need an embedding layer before en-
tering the MLP. Please refer the experiment section for the
specific design of the gate. The output of the MLP is a logit
value Gate(x) which is trained to express the ranking for
the prediction of the attached expert model on the sample
x.



Gate Expert
Head

Feature from Backbone

Confidence
Score

Expert
Output

Gate
Unit

Orignal 
Model Head

Sigmoid

Expert Backbone

Figure F3. The gate architecture

G. Relation to EE and MoE
The proposed ORXE model can be viewed as a special case
of early exiting (EE) and top-1 mixture of experts (MoE).
However, there are fundamental differences between our
work and conventional EE and MoE.
In conventional EE systems, the model is partitioned into
multiple sequential segments, each augmented with an aux-
iliary head for intermediate predictions. Computation must
always begin from the first segment, deciding at each head
whether to proceed or stop further computation. In con-
trast, within ORXE, each segment functions as an inde-
pendent expert model; therefore, computation is not con-
strained to always start from the initial segment. During
routing, ORXE not only supports the standard EE decision-
making (continue or exit) but also enables very challenging
samples to bypass multiple intermediate experts directly.
Consequently, ORXE provides significantly greater flexibil-
ity compared to conventional EE methods. The comparative
results in Fig. 2b further demonstrate that ORXE achieves
higher efficiency than conventional EE approaches. Within
a MoE framework, the primary advantage of ORXE lies in
leveraging a subset of experts themselves to determine the
data routing path rather than a dedicated router. In con-
ventional Top-1 MoE systems, the routing decision is made
prior to invoking any experts. Consequently, the router must
possess sufficient complexity and capacity to accurately un-
derstand the relative strengths of various experts. Such a
router is computationally costly, especially in systems de-
signed explicitly for computational efficiency. In contrast,
ORXE adopts an approach where experts are selectively
used on-demand as implicit routers. This design eliminates
the additional computational overhead associated with ded-
icated routing modules. Furthermore, ORXE can be viewed
as employing a form of partial post-expert routing, inher-
ently providing greater accuracy compared to purely pre-
expert routing methods.



Input

Exit

Exit

Layer

Head

Layer

Head

Layer

Head

Confident

Unconfident

(a) Conventional Early Exit

Input

Expert

Expert

Expert

Exit
ConfidentUnconfident

Highly
Unconfident

Exit

Exit

Expert

(b) ORXE’s equivalence in the context of Early Exit

Figure G4. Differences between ORXE and conventional EE

Input

Output

Expert Expert Expert

Router

...

(a) Conventional Top-1 Mixture of Experts

Confident

Unconfident

Input

Output

Expert Expert Expert

Router

...

(b) ORXE’s equivalence in the context of Mixture of Experts

Figure G5. Differences between ORXE and conventional Top-1 MoE


