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A. Data Preprocessing

fMRI Data. This paper is based on the Natural Scenes
Dataset (NSD)1 [1]. Since we use spherical data as model’s
input, we employ the data preprocessed with FreeSurfer,
which is provided by the official NSD dataset. Taking
subj01 as an example, the original fMRI path we use is:

nsddata betas/ppdata/subj01/fsaverage

/betas fithrf GLMdenoise RR/

The data values here are single-trial beta weights estimated
by applying a general linear model (GLM) to the raw fMRI
time series, representing the voxel-wise response and its
correlation with visual stimuli. The data provided by the of-
ficial source are registered to the FreeSurfer standard fsav-
erage7 surface. We resample the data to a 40,962 sphere to
match the compatibility with SphericalUNet [16]. Resam-
pling is performed using the open-source SphericalUNet
[16] package. Then, we independently apply zero-score
normalization for each voxel within the train data of a
subject. The val and test data are zero-centered using
the mean and variance from the train data. The data split
follows the standard setup used in previous works.

Cortex Structure Data. Still taking subj01 as an exam-
ple, our cortical structural data comes from the path:

nsddata/freesurfer/subj01/surf

We use four types of structural information: cortical thick-
ness, surface area, sulcal depth, and curvature. Taking
the left hemisphere as an example, we use the following
four files: lh.thickness, lh.area, lh.sulc, and
lh.curv. We apply the same method as with the fMRI
data to resample it to the fsaverage6 surface. Then, we
performed zero-score normalization on each individual file
(i.e., each hemisphere of each subject).

Image-Text Pair. All images in the NSD dataset are de-
rived from the MS-COCO [5] dataset. The text annotations
we use are from the official MS-COCO2 dataset.

1https://naturalscenesdataset.org
2http://images.cocodataset.org

B. Technical Details

Random Rotation of Sphere Positional Emb. The pseu-
docode is shown in Algorithm B-1. In the algorithm, we ap-
ply Rodrigues’ rotation formula, a mathematical tool used
for rotating 3D coordinates in 3D Euclidean space.

Algorithm B-1: Random Rotation Augmentation
of Sphere Positional Embedding

input : Original spherical coordinates x ∈ Rn×3

Maximum rotation angle θmax

output: Augmented coordinates x′ ∈ Rn×3

1 # get a random rotation axis v
2 ϕ ∼ U(0, 2π)
3 φ ∼ U(0, π)
4 v = (vx, vy, vz) = (sinϕ cosφ, sinϕ sinφ, cosϕ)

5 # get a random rotation angle θ
6 θ ∼ U(0, θmax)

7 # apply Rodrigues’ rotation formula

8 K =

 0 −vz vy
vz 0 −vx
−vy vx 0

, I =

1 0 0
0 1 0
0 0 1


9 R = I+ sin θ ·K+ (1− cos θ) ·K2

10 x′ = xR
11 return x′

Positive Sample Mixup. We present the pseudocode for
positive sample mixup augmentation in Algorithm B-2. To
uniformly sample a point w as the mixup weight in the con-
vex polytope defined by equation (3), we sample a point
from the 3-dimensional Dirichlet distribution D with pa-
rameters a = (1, 1, 1). The N -dimensional Dirichlet dis-
tribution is the N -dimensional generalization of the Beta
distribution, and its probability density function is given by:

pD(w|a) =
1

B(a)

N∏
n=1

wan−1
n . (B-1)

Here, B(n) is the normalization factor, ensuring that the
probability density function integrates to 1 over the domain:
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B(a) =

N∏
n=1

Γ(an)

Γ

(
N∑

n=1
an

) . (B-2)

Algorithm B-2: Positive Sample Mixup
input : Three fMRI scans x = (x1, x2, x3)

Mixup ratio λ
Mixup number K

output: Augmented samples x̃1, x̃2, · · ·
1 t ∼ U(0, 1)
2 if t < λ then
3 for k ← 1 to K do
4 a = (1, 1, 1)
5 w ∼ D(a) # Dirichlet Dist., Eq. (B-1)
6 x̃k = w · x
7 return x̃1, x̃2, · · · , x̃K

8 else
9 return x1, x2, x3

Multi Positive Samples InfoNCE. We modify the In-
foNCE [7] to accommodate the scenario where multiple
positive samples exist within a batch. The algorithm for
multi positive samples InfoNCE is in Algorithm B-3.

Algorithm B-3: LInfo for Multi Positive Samples
input : Query q ∈ Rn

Positive key k ∈ Rn

Temperature coefficient τ
Image index I ∈ Nn

output: The InfoNCE loss l

1 q = q/||q||
2 k = k/||k||
3 W = q · k⊤/τ # W ∈ Rn×n

4 Let sample mask θij =

{
1 if Ii = Ij

0 if Ii ̸= Ij

5 ealli = log
n∑

j=1

exp (Wij) # eall ∈ Rn

6 eposi = log
n∑

j=1

θij exp (Wij) # epos ∈ Rn

7 l =
n∑

i=1

(
ealli − eposi

)
/n

8 return l

C. Training Details

Sphere Tokenizer. The training is conducted on a sin-
gle NVIDIA A800 80GB GPU. The hyperparameters are
shown in Tab. C-1. We use a cosine learning rate scheduler
during training. To improve the robustness of the model, we
introduce two data augmentation techniques: mixup with
parameters ratio=0.3 and beta=0.3, and the random
rotation augmentation (maximum rotation angle: 5◦) for po-
sition condition mentioned in our paper §3.2. To make the
model focus more on visual brain regions, we only compute
the loss for visual voxels.

fMRI Encoder. The training is conducted on a sin-
gle NVIDIA A800 80GB GPU. The hyperparameters are
shown in Tab. C-1. We use a cosine learning rate sched-
uler during training. To improve the model’s generalization
ability, we applied augmentation to the images. Each train-
ing image has a 50% chance of being randomly horizon-
tally flipped. The color properties are perturbed as follows:
brightness, contrast, and saturation with a maximum per-
turbation of 0.2, and hue with a maximum perturbation of
0.1. Then the image is randomly rotated by up to 30◦ and
scaled within the range of [0.8, 1.0]. The temperature coef-
ficient of LbiInfo is 0.1. To avoid the influence of outliers,
the CLIP embeddings are clamped to the range [-1.5, 1.5].

D. More Results

Sphere Tokenizer. We present more reconstruction re-
sults of the sphere tokenizer autoencoder in Fig. D-1, which
demonstrates its effectiveness.

Comparison to Previous Work. We report the quantita-
tive evaluation metrics in Tab. 1. The results for Mind-Vis
[2] and MindEye [10] are cited from the report in [9], while
the result for UMBRAE [12] is from the report in [11]. The
authors of NeuroPictor [4] fine-tune the model for each sub-
ject to achieve higher performance. However, to ensure a
fair comparison with other methods, we cite and report the
version w/o fine-tuning. The remaining methods are cited
from their respective original papers.

Quantitative and Qualitative Results. We present
the quantitative results on each subject of NSD [1]
test in Tab. D-1. We also provide additional de-
coding results in Fig. D-2, D-3, and D-4. Readers
can download all reconstruction images results from here:
https://huggingface.co/datasets/yusijin/
sphere tokenizer results NSD.
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Inference
Low-Level High-Level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓
subj01 0.172 0.314 78.6% 88.7% 84.8% 88.9% 0.736 0.396
subj02 0.167 0.302 77.7% 89.0% 85.9% 88.2% 0.733 0.394
subj05 0.163 0.305 78.6% 90.1% 86.4% 89.6% 0.717 0.393
subj07 0.157 0.298 78.0% 88.3% 83.2% 86.7% 0.746 0.409

Average 0.165 0.305 78.2% 89.0% 85.1% 88.3% 0.733 0.398

Table D-1. Quantitative results for each subject on NSD [1] test.

Hyperparameters Value
encoder channels [64, 128, 256]
dncoder channels [32, 64, 128]
hidden channels 32

encoder ResNet blocks per down layer 4
decoder ResNet blocks per down layer 2

batch size 32
learning rate 4.0e-5
weight decay 0.05

max gradient norm 0.1
epoch 80

Table C-1. Hyperparameters for training sphere tokenizer.

Hyperparameters Value
embedding dim 1024

MLP ratio 4
depth 24

num heads 16
projection dropout 0.5

batch size 64
learning rate 5.0e-4
weight decay 0.05

max gradient norm 0.5
epoch 30

Table C-2. Hyperparameters for training fMRI encoder.

E. Limitations and Future Work

Although we propose a novel approach for vision brain de-
coding, there are limitations that should be acknowledged.

Low fMRI Resolution. Our model is trained on low
fMRI resolution, constrained by the spherical resolution
supported by the standard SphericalUNet. Experimental
results demonstrate that fMRI resolution has a significant
impact on performance. In the future, we plan to (1) use
higher-resolution spherical convolutions and (2) adjust the

architecture of the sphere tokenizer to more efficiently han-
dle low-resolution fMRI data.

Constrained Dataset Size. Similar to most previous
work, we have only validated our results on the NSD
dataset. Although current techniques can handle cross-
subject decoding, they are far from achieving cross-dataset
generalization. To achieve more robust vision brain decod-
ing, larger-scale datasets are required.

Challenges in Practical Application. Our model is based
on fMRI, which requires stringent conditions and high costs
for data collection. This limits the widespread adoption
and application of brain decoding technology. Some tech-
nologies that are more suitable for real-time brain activity
recording, such as EEG [6] and fNIRS [3, 15], fall far short
of fMRI decoding performance due to their low signal-to-
noise ratio. This highlights the need for more efficient meth-
ods to enable models to capture representations of brain ac-
tivity.

Challenges in Neuroscience. The scientific community
still has no definitive understanding of the detailed mech-
anisms behind the functioning of the human brain. The
development of brain decoding can provide novel perspec-
tives on this, highlighting the significance of biological in-
terpretability in brain decoding models. We will conduct a
deeper exploration of this.

Privacy and Security Considerations. Personal brain
activity data is highly sensitive private information, so pro-
tecting data security is crucial. For example, member-
ship inference attacks [14] and model inversion attacks
[8, 13, 17] can cause serious privacy leaks during the infer-
ence stage of the model. We will incorporate considerations
of data security in the future.
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Figure D-1. More fMRI vision voxels reconstruction results using the sphere tokenizer on the NSD [1] test.

4



Ground
Truth

subj01

subj02

subj05

subj07

Ground
Truth

subj01

subj02

subj05

subj07

Figure D-2. More fMRI-image reconstruction results on the NSD [1] test.
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Figure D-3. More fMRI-image reconstruction results on the NSD [1] test.
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Figure D-4. More fMRI-image reconstruction results on the NSD [1] test.
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