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Section provides ablation study on our time-dependent
deformation refinement module and contact-guided adap-
tive density control strategy. Section 2 introduces the de-
tails of our capture procedure for capturing new sequences
for DyTact-21 benchmark. Section 3 discusses how we vi-
sualize the contact map. Section 4 describes the implemen-
tation details of DyTact. Section 5 shows more qualitative
comparisons on novel view synthesis. Section 6 discusses
limitations and future work. We kindly refer readers to our
supplementary video for more results.

1. Ablation Study

Time-dependent Deformation Refinement Module.
Qualitative comparisons in Figure 1 show that the refine-
ment module Rθ plays an important role in alleviating
blurry artifacts around contacting regions caused by time-
dependent high-frequency deformations of hand skin. We
also observe consistent quantitative results in Table 1 (II)
that removing Rθ degrades the overall performance.

Contact-guided Adaptive Density Control Strategy.
Figure 2 shows that the accuracy and coverage of contacts
estimation improves by a large margin after introducing the
contact-guided adaptive density control strategy. Table. 1
(I) indicates that the contact-guided adaptive density control
strategy helps accumulate more gradients among contacting
regions and provide an effective inductive bias for the den-
sification process during optimization, which is important
to improve the accuracy of the occluded areas.

mIoU↑ SSIM↑ PSNR↑ LPIPS↓ F1 score↑

I. w/o CG 0.216 0.975 31.82 0.021 0.352
II. w/o Rθ 0.225 0.971 31.79 0.021 0.375
III. Full 0.226 0.978 31.88 0.020 0.378

Table 1. Ablation studies for the refinement module Rθ and
the contact-guided adaptive density control strategy (CG). Both
components improve reconstruction accuracy.
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Figure 1. Ablation studies for the refinement module Rθ . Rθ

captures time-dependent deformation which reduces blurry arti-
facts around the contact region.
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Figure 2. Ablation studies on the Contact-Guided Adaptive
Density Control Strategy. This strategy effectively regulates
the contact regions by allocating more isotropic gaussian surfels,
yielding more accurate contact estimation.

2. Capture Procedure
Specifically, our capture procedure consists of three steps:
1. The object is wrapped in disposable shrink wrap,

vacuum-sealed to ensure close surface conformity, and
coated with wet paint designed to leave residue upon
contact;

2. The subject wears a pair of disposable, tight-fitting,
transparent gloves and performs the manipulation task
with the painted object;

3. Following the interaction, paint residue is transferred
to the gloves, providing clear visual evidence of hand-
object contact. This residue serves as a physically
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Figure 3. Qualitative Comparisons on Novel View Synthesis. Our method produces superior reconstruction quality with sharper novel
view synthesis renderings, comparing with Deformable3DGS [10], 4DGaussians [8], Realtime4DGS [9], AT-GS [1], and 3DGStream [7].
DyTact delivers more fine-grained details, particularly in occluded regions and around edges, whereas baseline methods exhibit artifacts
and blurriness. Please zoom in for better views.

grounded proxy for accumulated contact areas.
The setup can be easily reset between sequences by replac-
ing the shrink wrap and gloves.

3. Contact Map Visualization
To estimate the contact maps, DyTact first estimates con-
tacting Gaussian surfels and allocate green color to them.

For DyTact and MANUS [5], we utilize the differentiable
rasterizer for Gaussian Splatting [4] to render contact maps.
For MANO [6] and HARP [3], we utilize Blender’s emis-
sion renderer to render the contact maps. For fair compar-
isons, we increase the resolution of MANO and HARP ver-
tices from 778 to 49,000 vertices by subdividing the meshes
before estimating contacts.



4. Implementation Details

We train for 60, 000 iterations using the Adam opti-
mizer [2]. During training, we optimize the parameters of
Gaussian surfels, object poses, and MANO hand parame-
ters. The learning rate for the positions of Gaussian sur-
fels starts at 0.008 and decays exponentially to 0.000008 by
the final iteration. The learning rate for surfel scaling is set
to 0.05, while the remaining primitive parameters use the
same learning rates as those in 3D-GS [4]. In addition to
Gaussian surfel parameters, we finetune the MANO param-
eters and object tracking poses. For the MANO parame-
ters, the learning rates are set to 0.001 for pose and shape,
and 0.0001 for relative rotation and translation. For object
pose parameters, the learning rate starts at 0.005 and de-
cays exponentially to 0.00005 by the final iteration. We en-
able the contact-guided adaptive density control every 200
iterations, starting from iteration 1,000 and continuing until
the end of training. Additionally, we reset the opacities of
Gaussian surfels every 6,000 iterations to ensure stable up-
dates. All the experiments are conducted on a single RTX
A6000 GPU.

5. Results on Dynamic Reconstruction

In Figure 3, we show more qualitative comparisons
of dynamic reconstruction with five baselines De-
formable3DGS [10], 4DGaussians [8], Realtime4DGS [9],
AT-GS [1], and 3DGStream [7]. DyTact exhibits a more 3D
consistent and detailed reconstruction of dynamic manipu-
lation scenes, especially around the contact regions.

6. Limitations & Future Work

While this paper primarily focuses on accurate dynamic
contact estimation, we acknowledge that the full complex-
ity of everyday hand and object dynamics vastly exceeds
the scope of our current investigation. Our work is capable
of modeling two hands manipulating rigid objects, thereby
deferring the challenges posed by articulated or more gen-
eral object types to future research. Furthermore, since the
evaluation of DyTact relied on an indoor multi-view capture
system, exploring dynamic contact modeling for bi-manual
manipulation in outdoor environments or under sparse-view
conditions presents a key avenue for future work. We also
see potential for developing more comprehensive evaluation
metrics for dynamic contacts in future works. Finally, the
wet-paint technique employed in this study captures only
ground-truth accumulated contacts. A crucial direction for
future research is therefore the development of new strate-
gies to accurately and efficiently capture ground-truth dy-
namic (or instantaneous) contacts in a scalable and cost-
effective manner.
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