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Abstract

Modern deep-learning super-resolution (SR) techniques
process images and videos independently of the underly-
ing content and viewing conditions. However, the sensi-
tivity of the human visual system (HVS) to image details
changes depending on the underlying image characteris-
tics, such as spatial frequency, luminance, color, contrast,
or motion; as well viewing condition aspects such as am-
bient lighting and distance to the display. This observa-
tion suggests that computational resources spent on up-
sampling images/videos may be wasted whenever a viewer
cannot resolve the synthesized details i.e the resolution of
details exceeds the resolving capability of human vision.
Motivated by this observation, we propose a human vision
inspired and architecture-agnostic approach for controlling
SR techniques to deliver visually optimal results while lim-
iting computational complexity. Its core is an explicit Hu-
man Visual Processing Framework (HVPF) that dynami-
cally and locally guides SR methods according to human
sensitivity to specific image details and viewing conditions.
We demonstrate the application of our framework in com-
bination with network branching to improve the computa-
tional efficiency of SR methods. Quantitative and qualita-
tive evaluations, including user studies, demonstrate the ef-
fectiveness of our approach in reducing FLOPS by factors
of 2x and greater, without sacrificing perceived quality.

1. Introduction

Super-resolution (SR) has quickly become a fundamen-
tal tool in imaging and media distribution, given the in-
creasing requirements of delivering higher quality content
at lower bandwidths, and as general compression tools to
deal with escalating imaging sensor resolutions. In me-
dia production such as virtual reality, augmented reality,
and video games, SR is indispensable to cater to the high-
resolution, high-framerate requirements of modern displays
and low power budgets [2, 17, 33, 36]. With the advent
of hardware-specific accelerators for efficiently running DL
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models [34], most modern approaches, even for real-time
needs, involve using convolutional neural networks trained
on large priors of natural images, which during run-time
take low-resolution images as input and produce higher res-
olution versions. However, even with ever-increasing com-
putational power at our disposal, the computational bur-
den of high-quality SR methods is still problematic [1]. In
fact, state-of-the-art methods on real-time SR using neu-
ral networks, such as Bicubic++ [8], directly compete with
efficient, classic bicubic interpolation techniques, yielding
marginal quantitative improvements while still struggling
to compete in runtime. At the same time, the human visual
system (HVS) is compressive by nature [52], meaning it has
limited capabilities to resolve detail beyond some thresh-
olds determined by viewing conditions, spatial frequencies,
color or motion; any further improvement in reconstruction
quality achieved by using a more expensive model can be
seen as wasted resources. Our key insight is that, given
that SR images are to be observed by a human, we can
take advantage of these naturally compressive capabilities
of the HVS [52] to process differently areas of the input im-
age depending on its characteristics and human sensitivity
to those, such as spatial frequency, luminance, color, con-
trast, or even, in the case of videos, motion. Computational
resources are allocated to perceptually meaningful areas, as
determined by our low-level visual model; analogously to
how lossy compression schemes such as JPEG similarly al-
locate memory by leveraging the HVS.

This observation is the foundation of our work. First,
we quantify the frequency reconstruction capability of base-
line SR neural networks after each layer, doing so through
attenuation curves. Then, after dividing an image or indi-
vidual frame into a set of patches, our Human Visual Pro-
cessing Framework (HVPF) (grounded on recent contrast-
sensitivity functions [29]) predicts how many layers of the
network should the patch be processed through; visually
sensitive patches will be processed by the whole model,
whereas the least visually meaningful content will simply
resort to bicubic interpolation, Fig. | shows a visual exam-
ple. We apply our model to other use cases (with the goal



GT VDSR

Bicubic VDSR-ours
GT VDSR

GT VDSR
Bicubic VDSR-ours

GT VDSR
Bicubic VDSR-ours

GT VDSR
Bicubic VDSR-ours

High

Quality
EDSR Medium
Quality
Low
EDSR-ours Quality
EDSR
EDSR
EDSR-ours
EDSR-ours
EDSR
EDSR-ours
EDSR
EDSR-ours

Figure 1. Visual results of our method compared to the original networks. On the right, we can observe the maps produced by our

perceptual model.

of computational efficiency) such as selecting a network of
appropriate depth from a set of candidates. In all of these
cases, the goal is make the inference as fast as possible with-
out noticeable quality degradation. Through a series of user
studies and quantitative measurements of quality and run-
time, we demonstrate that our HVPF enables faster runtime
woth no perceivable loss of quality when compared with the
baseline models. Furthermore, contemporary SR methods
often only consider foveal vision, making them suboptimal
for wide-field-of view systems such as AR/VR displays. We

also propose an eccentricity-aware extension of our model
for VR and AR applications, where computational efforts
are further directed as per the loss of human visual acuity in
peripheral vision. [36].

2. Related Work

Single-frame SR  Super-Resolution or image-upsampling
has traditionally been addressed through interpolation-
based techniques. Nearest-Neighbor, Bilinear or Bicubic
interpolation techniques are commonly used, featuring in-
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creasingly bigger receptive fields and perceived quality,
at the cost of performance. However, interpolation-based
techniques that solely consider the input image are funda-
mentally limited in terms of upsampling capacity, as high
frequency signals lost in the downsampled or compressed
image could never be recovered from the signal itself.
Leveraging natural image statistics, either explicitly [47]
or implicitly [43] has shown greater potential, as lost fre-
quencies can be composed from the expected distribution
already present in natural images. Implicit (Deep-Learning
based) methods have recently received the greatest atten-
tion, as large datasets of high resolution images [11, 39]
and advances in neural-network architectures [13, 16, 21].
Early efforts were based on convolutional neural net-
works [12, 19, 45]. In practice, they learned sets of convo-
lutional filters adapted to different features, enabling them
to better reconstruct missing frequencies in a content-aware
manner. These were usually trained end-to-end via down-
sampling HR images and upsampling the result to recover
the original signal, usually employing pixel-error or per-
ceptual [50] loss functions. A popular extension of these
approaches leveraged adversarial training [14] with latent
CNN:s for higher quality results [44]. More recently, some
methods rely on Vision Transformers [5, 13, 24, 26] for
their latent architecture. The self-attention mechanism in-
herent in the architecture enables capturing long-range rela-
tionships within the image content, as opposed to the solely
local receptive fields of CNN-based approaches. State-of-
the-art methods nowadays rely on diffusion [38] rather than
adversarial training [23, 46], featuring improved learning
stability and quality. Despite their quality however, diffu-
sion methods (either with vision transformer or CNN back-
bones) are computationally expensive and usually disre-
garded in applications where performance is primed.

Temporally-consistent Video SR Temporally-consistent
video SR has received ample attention in the literature,
for both pre-rendered video [22] and real-time content (i.e.
videogames) [2, 17, 33]. The main difference between
single image SR is the availability of additional frames,
as well as extra information from the rendering engine in
the case of videogames (i.e. motion vectors, material in-
formation). Traditionally, single-image learning-based ap-
proaches struggle to provide consistent SR across frames
due to the implicit, difficult-to-interpret latent space they
leverage, which does not guarantee temporally consistent
outputs. To ensure smoothness across frames, most works
simply condition the current frame upsampling on previous
or subsequent frames through motion vectors or optical flow
to ensure smoothness [33].

There is a fundamental difference between the traditional
approach to video SR and our proposal that is important to
clarify. Traditionally, video SR methods aim to achieve a
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better spatial reconstruction due to the availability of mul-
tiple frames. However, human sensitivity to spatial details
decreases with movement, so a human vision centric ap-
proach should leverage this and reduce quality as a function
of movement magnitude, without noticeable visual degra-
dation. Our proposed model quantifies the loss of visual
acuity with motion, and appropriately decreases the spatial
quality of SR. Therefore, we can get faster per-frame SR
with videos, in a manner adaptive to factors such as the na-
ture of the content and amount of movement.

3. Background

3.1. Low-Level Human Vision

Owing to evolutionary imperatives of efficiency, the HVS
has evolved to be a compressive system [52]. What this
essentially means is that we are not able to resolve all the
visual information that is coming into our eyes. The first
critical aspect is that due to center surround receptive field
of the early visual system, we are much more sensitive to
variations in contrast rather than absolute luminance [40].
Furthermore, it is well known that human contrast percep-
tion is highly dependent on factors such as spatial frequency
and luminance. Due to the nature of the collective recep-
tive field our early human vision, we are most sensitive to a
narrow band of spatial frequencies, and our sensitivity falls
of at lower and higher spatial frequencies. This phenom-
ena is aptly captured by a model of the early visual system
called the Contrast Sensitivity Function (CSF) [6]. The CSF
is highly dependent on factors such as local adapting lu-
minance, size of the stimulus, eccentricity, and the amount
of movement. For example, universal sensory models such
as the Weber-Fechner law tell us that our ability to detect
contrast decreases with increasing luminance [27]. Further-
more, due to effects such as contrast masking, neighboring
contrast is known to strongly effect human visual percep-
tion [41]. This is why we are sometimes less likely to see
a loss of resolution in highly textured areas as opposed to
independent strong edges. Another very important aspect is
that movement or temporal variation decreases our ability
to detect and resolve contrast [4]. This behavior is quanti-
fied by the dependency of the CSF on temporal frequencies
as well as spatial frequencies.

3.2. Visual Difference Predictors (VDP)

Inspired by the compressive nature of the human vision, Vi-
sual Difference Predictors (VDP) are models that aim to
predict the perceived differences between two images based
on robustly modeling the frequency selective nature of the
early visual system. The framework was originally intro-
duced by Daly et al. [10]. Since then, there have a lot of
improvements and extensions to the original model. [27]
designed the HDR-VDP, which was one of the first human



perception inspired metrics aim to quantify visual differ-
ences between HDR images. [28] then extended the VDP
to account for human peripheral vision and color [30]. [42]
employed the VDP framework to control spatial quality in
VR-HMDs. [41] designed a variation of the VDP frame-
work for real-time perceptually optimized tone mapping.
Our HVPF can be thought of as a VDP framework specif-
ically tailored for real-time application to the problem of
Deep Learning based SR. To the best of our knowledge, our
framework is the first application of robust Human Vision
frameworks to efficient neural network based image/video
processing.

4. Our Method: A Human Visual Processing
Framework (HVPF)

Our approach is centered around the frequency domain in-
terpretation of SR and the well-established fact that the
early visual system is frequency-selective. ~The main
motivation is that the difference between low and high-
resolution images lies in the attenuation and removal of
higher spatial frequencies. The task of an SR neural net-
work is to reconstruct the missing high spatial frequencies.
The better and stronger the neural network, the better the
reconstruction. The main idea behind our work is that due
to the limitations of the HVS, we do not always need a per-
fect reconstruction. If we can quantify the spectral nature
of an SR method, we can guide the method using models
of human visual perception to deliver the least expensive
reconstruction required for optimal visual quality, i.e., any
further improvement in reconstruction leads to no perceiv-
able benefit while wasting computational resources.

While there are various ways to control the trade-off be-
tween the computational efficiency of an SR method and the
reconstruction quality, we consider two: network branching
and altering network depth. The first approach adds ear-
lier exit points to the original network. Using earlier exit
points, i.e., shallower branches, leads to less computation
and lower reconstruction quality. In the latter method, dif-
ferent variants of an SR method are created by varying the
depth of the original network to make shallower networks
more efficient yet potentially comprising the visual quality
of the output. Our method is not limited to the above tech-
niques, and others, such as network quantization, could be
easily incorporated.

Given different variants of an SR method, our method
aims to predict which version should be used in a specific
region of an image or video frame. We propose to use at-
tenuation curves to first quantify the reconstruction capa-
bility of a given variant. The attenuation curves express
the ratio of the radially averaged 2D Fourier transform of
the reconstructed output and its full-resolution counterpart.
We demonstrated that such curves can be computed on a
set of images and reused. Furthermore, we design a frame-
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work that expresses the required reconstruction quality in
the form of the attenuation curve. Later, our method selects
an appropriate SR variant to ensure adequate reconstruction
quality for a region while minimizing computational costs.
In practice, our method works on image patches which are
both input to the SR method and our prediction. Below, we
describe all the components of the method.

4.1. Attenuation Response Estimation

For a given SR method and an input image, we can quan-
tify the quality of reconstruction by comparing the magni-
tude of the Fourier Transform of the reconstructed image
and its ground-truth version. Given a ground-truth image I,
we first downscale it by a factor k, producing image .
Later, we use a SR method to upscale that image back to its
original resolution. Comparing the Fourier transform of the
resulting image I and the ground-truth counterpart /, allows
us to quantify the reconstruction power of the analyzed SR
method. More formally, given a SR method ¢ and a test im-
age I, we define the frequency dependent attenuation curve

as:
_ [F (0U)) ()]

7Nl
where .7 denotes the Fourier transform. Since we are inter-
ested in characterizing the reconstruction capability of the
method, we do not compute the curve for one image but for
a set of images {Ij;} and compute for a given SR method
¢ and downscaling factor k the aggregated attenuation re-
sponse curve as an average across all the images:

a(I, f) (1)

N
ag(f) =" ol f). )
=1

Although not guaranteed, the value of af is expected to

lie on (0, 1) range, where aﬁ(f) = 0 means that the SR
method was not able to reconstruct content at spatial fre-
quency f, while aﬁ( f) 1 indicates the full capability
in reconstructing this part of the signal. It has to be noted
that this measure quantifies the presence of the signal in the
reconstructed output and not its correctness. Nevertheless,
we use this as a proxy for the reconstruction quality. This
choice was further motivated by the fact that, although neu-
ral networks are non-linear functions, SR is a low-level task
with consistent and deterministic characteristics in the fre-
quency domain. The average spectrum of natural images
is known to adhere to consistent Fourier characteristics like
the inverse power law fall-off. Thus, an average attenua-
tion curve is a good approximation for network response to
a general natural image for the task of SR. In order to be
more conservative, there is a possibility to use a particular
percentile or quartile around the average, but our empirical
analysis did not reveal it necessary, which is later confirmed
by the results of our user experiments.
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Figure 2. The attenuation curves derived for the case of modulat-
ing the depth (number of layers) of the network. Depth equal O
corresponds to a bicubic upsampling. As the depth of the network
is reduced the performance of the solution in reconstructing high-
spatial-frequency signal is reduced.

For all the variants of the SR techniques considered in
this work, we pre-compute the attenuation response curves
using the above procedure. We always use 19 natural im-
ages from the set5 [7] and setl4 [49] datasets, and com-
pute different sets of curves for downscaling parameter
k € {2,4,8}. Fig. 2 presents a set of curves for the case
of varying the network depth. To obtain a more compact
representations of the attenution functions, we model them

using Gaussian fall-off:
exp (— ) +c,

where f is the spatial frequency and a, b, ¢ are parameters
estimated via fitting. After estimating the attenuation curves
for variants of SR methods, the next step is to estimate
which of them is ideal for a given patch of the image or
video frame.
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4.2. Perceived Contrast Modeling

We model the perceived luminance contrast following the
VDP framework e.g. [42]. Please refer to the original
work for more details on perceptual difference modeling.
To summarize our model designed for application to SR,
luminance contrast is computed as C(f, p) using a multi-
scale Laplacian-Gaussian pyramid, where p is the location
and f is spatial frequency [9, 37]. The contrast measure is
then normalized by the contrast sensitivity function (CSF),
yielding C,,(f, p). Finally, the perceived contrast, C;(f, p),
also incorporates the visual masking model [48] with pa-
rameters o = 0.7 and 8 = 0.2.

4.3. Optimization

Given an input patch, the goal is to find the maximum at-
tenuation that is under the resolution capabilities of human
vision. According to the contrast model, the attenuation re-
mains undetectable by an observer if the contrast difference
between the original image and the attenuated one is un-
der 1 JND. Consequently, to find the attenuation that results
in maximum performance gains yet imperceptible quality
loss, we optimize the attenuation curve such that it results
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in exactly 1 JND difference, i.e.,

V¢ Cilp, f) = Ce(p, f) =1, @)

where C;(p, f) represents the perceived contrast of the in-
put image patch and C}(p, f) represents the perceived con-
trast of the network output. Assuming the attenuation
curves are a response of the network/branch to the input,
the attenuation is a modulation of the physical image con-
trast at different frequencies:

_C'(fip) _ Culfip)
C(f,p)  Culf.p)-

Our immediate goal is to estimate the tolerable output con-
trast C/ (f,p) from the constraint in Eq. (4). We start by
developing Eq. (4) by substituting expressions from [42],
which leads to the following form of the constraint:

o' (f) ®)

sign(Cy, (£,p))-| Ch (£:p)|”

e Y lCn(fa)l”

gEN(p)

sign(Cn (f,p))-|Con (f,p)|*
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ek Y [Ca(f)l

gEN(p)

(6)

where the numerators encode the CSF-weighted contrast
values, while the denominators model visual masking ef-
fect. It is evident that C/, (f, ¢) cannot be directly calculated
from this equation due to the visual masking term present
in the denominator. To address this problem, similarly to
the work of [42], we make the assumption that the contrast
masking for the up-sampled output patch can be approxi-
mated by that of the input patch. Furthermore, knowing that
the sign of the contrast should remain unaltered through-
out the neural network processing Eq. (6) we can derive
CJ.(f,p) directly as:

1/« (7)

ICn (£:0)1°

Ch(f.p) = )(1 + 2 gene) TN
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It should be noted that the sign of the contrast is omitted
since the focus is on the magnitude of the contrast itself.
Now assuming that we have three levels of the contrast
pyramid, tolerable attenuation at three different spatial fre-
quencies can be calculated as follows:

C;L(fmp)

ti N Cn(f77p)

It is important to note that thanks to the derivation in Eq. (7),
the attenuation can be computed directly from C,,, i.e., the
input patch only.

Having the tolerable attenuation t = {¢1,¢2,t3}, we can
find the most suitable SR network/branch by identifying
the one with most similar attenuation curve (Section 4.1,
Eq. (3)). More formally, this step can be defined using fol-

IOW ing OptlmiZation prOblemZ
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branch/network = arg max
J
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Figure 3. Flowchart illustrating the methodology employed for ef-
ficient SR. The input image is divided into patches. For each patch,
our task is to estimate which branch B (for the branching case) and
which network D (for the depth case) should be used to each patch.
The estimation is made through analyzing the computed attenua-
tion characterstics (right). Such as to minimize computations with
noticeable quality degradation.

where t; = {a'(f1),a'(f2),c'(f3)} is the vector of the
estimated attenuation produced by Eq. (3) for a given
netwrok/brach j.

4.4. Model Efficiency

In our application, it is essential that the overhead of the
HVPF is minimal compared to the performance improve-
ments provided by the SR method. Although we prototyped
our solution using Python and evaluated it on a single CPU
thread, it has been shown that a similar processing pipeline
can be implemented efficiently on a GPU. This is primarily
due to the nature of the computation, which consists of in-
dependent per-pixel operations (see Eq. (7)). Additionally,
the construction of the contrast pyramid can be accelerated
using MIPMAP functionality. Rencently, [41] have demon-
strated a HVPF on the Meta Quest 2 VR headset, achieving
2K resolution with a single execution time of under 1 ms.

5. Experimental Setup

Validation on SR Models As mentioned in Section. 4,
we employ our HVPF to optimize SR for two cases. The
first approach adds earlier exit points (branches) to the orig-
inal network. Using earlier points, i.e., shallower branches,
leads to less computation and lower reconstruction qual-
ity. To test this case, we employ the popular and seminal
VDSR [20] network. A neural network with 19 branched
outputs was created as per the setting in Fig. 3 (top). Af-
ter each ReLLU activation function, an exit point was added,
structured identically to the final layer of the original net-
work., similar to [18]. Our task was to to use the HVPF
to select the appropriate branch (per image patch) such that
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Figure 4. Attenuation curves derived from the SwinlR, a trans-
former based SR model. As the size of the model increases the
capability of reconstructing higher frequency details increases.

there is no noticeable quality loss.

The second approach is reducing the depth or number
of channels of a network to make it more efficient. In this
case, we have a number of candidate networks with differ-
ent number of channels-per-layer, and our task is to employ
our HVPF to select the appropriate one per image patch.
To test this case, we employ the EDSR [25] network. In
the case of EDSR, five networks with varying numbers of
channels per layer (256, 128, 64, 16, 8) were trained inde-
pendently, the training procedure was the same as described
in [25]. Our task was to use the HVPF to select the appro-
priate network (per image patch) such that there is no no-
ticeable quality loss. We include additional details on our
choice of patch sizes in Sec. D.

On the generality of our visual framework. We selected
EDSR and VDSR models as test benchmarks for HVPF due
to their widespread use, robustness and demonstrated ef-
ficacy over the years. Our algorithm is network agnostic:
most SR approaches will follow similar attenuation charac-
teristics, which are grounded in the nature of natural images
and the Fourier nature of the SR problem [30]. In Fig. 4
we show attenuation curves for Transformer-based models,
where increasing model size directly correlates with its abil-
ity to reconstruct higher spatial frequency content. This is
also in line with previous research on implicit models for vi-
sion and graphics, where increasing the number of weights
directly correlates with the capacity of the model to learn
higher frequency content [31] and together with our results
on CNNs makes us confident on the generality of our HVPF
to be leveraged with any SR method.

Subjective Quality Study. We developed a perceptual
experiment with human subjects in order to validate our ap-
proach.

Task. We employed a 2AFC experimental protocol. The
task was a forced choice between two test cases in relation
to a given high quality reference. Users were instructed to
select the test case which was perceived more similar to the
reference. On the right side we display the high quality ref-
erence; while the left side displayed either



* A) our HVPF-powered SR, selecting the appropriate net-
work/branch for the corresponding image patch or,

* B) The output of the unaltered full deep network applied
to the whole image.

These were displayed in randomized order. Users could use

the space-bar to switch between A and B, and press ENTER

when they had made their choice.

Stimuli. We employed 24 high-quality natural scenes
for our user study. The scenes were selected for diversity
in characteristics such as luminance, contrast, and texture.
Each scene was downscaled by a factor of x4 and upscaled
back to the original resolution.

In Sec. A we included additional details on the experi-
mental setup.

6. Results and Discussion

To evaluate the effectiveness of our method, we tested the
model on images and videos, as our model is addition-
ally capable of handling the temporal frequencies present
in videos.

6.1. Quantitative Results

The quantitative results for the image datasets are presented
in Tab. 1. The proposed method allows for comparable
performance to the original networks while reducing the
computational cost. For instance, the x2 and x4 upsam-
pling operations exhibit a reduced computational cost rang-
ing from 58% to 22% and from 70% to 20%, respectively.
For a single patch of size 10 x 10 the computational cost of
our method is 39KFlops, while for a patch size of 35 x 35
is 477KFlops.

Greater savings were achieved with x2 upsampling in
comparison to x4 upsampling, which is in line with ex-
pectations. This is due to the increased presence of high-
frequency information in the images, which allows for re-
constructing certain parts of the image with less computa-
tional power.

In order to evaluate the video, we estimated the optical
flow. Subsequently, we calculated the temporal frequency
that was necessary for our model, based on the velocities
obtained with the optical flow. The frame rate considered
for each video was 24 fps. The results for the video datasets
are presented in Tab. 2.

In Sec. C we provide an explanation for the choice of
FLOPS as a measure of efficiency.

6.2. Subjective Quality Results

It is well-known that metrics such as PSNR, SSIM, etc are
not correlated with human quality assessments, unable to
model the intricacies of how humans perceive image qual-
ity [15, 32, 35]. As our HVPF is based on a robust and de-
tailed modeling of early visual processing in a scene depen-
dent manner (unlike heuristic metrics trained over a large set
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Figure 5. The result of our subjective study (for 15 participants)
for the network branching application.
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Figure 6. Our model predictions based on gaze position with x4
super-resolution. In the first column, we have the original image
and the corresponding quality map. In the other column we have
the quality maps at different gaze positions.

of images e.g [51]), our hypothesis (little noticeable qual-
ity loss) can only be aptly verified using subjective quality
studies.

Fig. 5 shows the results of our 2AFC user study on
images for the network branching application case on the
VDSR. It can be seen that on average, the preference value
hovers around 50%, which is indicative that users were not
able to perceive any difference between the test cases A and
B in relation to the reference, which supports our initial goal
and hypothesis. As expected, no differences were perceived
even with the reported differences in PSNR and SSIM in
Tab. 1. Further results for the study on videos are provided
in Sec. B.2, which demonstrates the efficacy of our HVPF
for handling motion too.

A more detailed study on the network channel depth SR
alternative (EDSR, bottom Fig. 3) is presented in Sec. B.1,
providing similar conclusions. In summary, the studies
demonstrate that the results indeed conform with our hy-
pothesis that there is no perceivable loss in visual qual-
ity, even when there are significant computational savings
through the application of our HVPE.

Finally, we also include promising early results on
foveated SR (super resolution aware of gaze position, lever-
aging the substantially degraded visual acuity on the periph-
eral vision) in Fig. 6 and in Sec. E.



Table 1. Quantitative comparison on image datasets

Method  Scale Set5 Setl4 BSDI100 Urban100 DIV2K
PSNRT SSIMt  FLOPS|,  PSNRf SSIMf  FLOPS|  PSNRf SSIM{  FLOPS|  PSNRT SSIM{  FLOPS|  PSNR{ SSIM{  FLOPS|
Bicubic x2 3232 0923 2860 0.859 2822 0.834 2548  0.840 3123 0.898
VDSR x2 3415 0946 89.60G (100%) 29.98 0.899 173.68G (100%) 29.68 0.885 131.04G (100%) 27.17 0900 144.99G (100%) 32.65 0.931 2.04T (100%)
VDSR-ours x2 3253 0936 5199G (58%) 2929 0895 100.18G (57%) 2940 0883 61.63G (47%) 2648 0889 8543G (58%) 32.08 0928 1.06T (51%)
EDSR x2 3642 0954 154T(100%) 3203 0905 297T(100%) 30.62 0.888 2.25T(100%) 3042 0932 2.56T(100%) 34.84 0939 31.64T (100%)
EDSR-ours x2 3600 0951 353.09G (22%) 31.58 0901 691.09G (23%) 30.26 0.882 466.39G (20%) 29.74 0925 606.62G (23%) 3425 0925 7.27T (22%)
Bicubic x4 2698 0.790 2428 0.676 2454 0.638 2189  0.642 26.80 0.756
VDSR x4 28.13 0827 89.60G (100%) 2501 0.709 173.68G (100%) 25.11 0.670 131.04G (100%) 2275 0.698 572.38G (100%) 27.52 0.786 2.04T (100%)
VDSR-ours x4 2777 0823 64.13G (71%) 2486 0713 118.64G (68%) 2508 0.670 69.27G (52%) 2265 0.699 387.01G (67%) 2744 0.788 1.29T (63%)
EDSR x4 3060 0.878 579.49G (100%) 2695 0753 1.00T (100%) 2601 0.706 69539G (100%) 24.82 0776 3.16T (100%) 29.05 0.822 10.32T (100%)
EDSR-ours x4 3027 0874 14534G (25%) 2669 0750 236.71G (23%) 2582 0.701 173.54G (24%) 2448 0765 746.13G (23%) 2875 0816 2.46T (23%)
Table 2. Quantitative comparison on video datasets X4 upscaling
Method REDS Vid4 UDM10
PSNRT SSIM?  FLOPS|  PSNRf SSIMt  FLOPS|,  PSNR{ SSIMt  FLOPS|
Bicubic 2639 0.724 2244 0.614 30.76  0.884
VDSR 27.11 0.756 702.24G (100%) 23.14 0.670 291.96G (100%) 31.71 0.899 680.96G (100%)
VDSR-ours w/o temporal frequency 27.03  0.755 443.84G (63%) 23.06 0.667 194.23G (66%) 31.62 0.903 433.30G (63%)
VDSR-ours 26.66 0.739 173.77G (24%) 23.05 0.667 193.00G (66%) 31.58 0.902 386.77G (56%)
EDSR 2827 0.791  3.24T (100%) 23.92 0.711 1.59T (100%) 34.28 0.929  3.24T (100%)
EDSR-ours w/o temporal frequency 27.03  0.755 813.12G (25%) 23.73 0.703 348.84G (21%) 33.78 0.924 813.96G (25%)
EDSR-ours 27.03 0.755 586.58G (18%) 23.73 0.703 348.84G (21%) 33.84 0.925 801.61G (24%)

7. Limitations and Future work

Although the method demonstrated satisfactory perfor-
mance with regard to video content, it was observed that
aliasing issues were present. This phenomenon is com-
mon when individually processing frames as isolated still
images. In addition, our method does not explicitly guar-
antee the spatial consistency between the patches. How-
ever, no such inconsistencies were noted or reported by
the participants in our experiments. It would be of inter-
est to investigate the potential of our HVPF in conjunction
with video-specific SR techniques. Evaluating the perfor-
mance of our model within foveation-aware frameworks is
also an interesting avenue for future work, given that our
choice of contrast-sensitivity function (StelaCSF) is capa-
ble of modelling contrast sensitivity based on eccentricity.
Finally, our estimation is based solely on image luminance;
we could further leverage additional information, such as
colour, by integrating recent advances in color-aware CSFs
like CastleCSF [3].

8. Conclusions

We present a thorough novel framework to leverage the spe-
cific deficiencies of the HVS to optimize computational re-
sources in the context of SR. HVPF is fast, robust, and can
be seamlessly integrated into any SR framework, adaptively
optimizing computational resources to the areas in the im-
age that require it, from the assumption that a human will

be the final observer of the resulting SR image. While nor-
mally SR methods are evaluated in terms of reconstruction
quality, through metrics such as PSNR or SSIM, these met-
rics do not model the intricacies of human visual quality
assessment, and have been repeatedly demonstrated as un-
correlated with human visual perception [15, 32, 35]. In
contrast, we validate our framework through a series of hu-
man studies, showcasing indistinguishable quality at sub-
stantially reduced computational costs. Our results demon-
strate that even with FLOP reductions by factors of-and-
greater than 3x, our HVPF minimally degrades the SR out-
put such that the final result is not visually distinguishable
from the output of a fully-resourced deep network. We are
confident that our method can be further extended in the fu-
ture to better integrate with video-specific SR approaches,
and will be particularly relevant on VR and AR eccentricity-
aware SR frameworks, where computational savings can be
pushed significantly further.
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