Appendix

This supplementary provides additional details and results
that could not fit in the main paper. Specifically, we include:
(1) dataset and annotation generation (Gibson and HM3D),
(2) top-down visualization of co-visibility graph, (3) evalu-
ation metric details, (4) graph definitions used in DUSt3R
and CroCo experiments, (5) ablation studies on Covis, and
(6) Sim2Real downstream task details. All experiments and
dataset generation were conducted on an HPC cluster with
A100 and V100 GPUs, using a single GPU per run.

A. Dataset details

We detail the dataset construction and annotation processes
for the Gibson and HM3D environments, which form the
basis of our co-visibility analysis. For each dataset, we de-
fine scenarios as structured collections of images with asso-
ciated camera poses, designed to ensure high coverage and
annotation quality. Both datasets leverage simulated sen-
sors (pinhole and stereo) to generate RGB and depth data,
and we outline specific strategies used to handle scene di-
versity, pose recording, and structural alignment.

Gibson: This dataset covers 129 floors across 85 scenes. To
ensure diversity, we randomize seed numbers during data
generation, allowing for efficient image selection that max-
imizes spatial coverage with minimal redundancy. The im-
age selection process is further detailed in Sec. B.1. We
record precise camera poses using Habitat-sim and organize
images into structured scenarios for downstream use.
HM3D: This dataset contains 755 annotated scenes. Since
floor heights are not provided, we estimate them by clus-
tering the Y-axis values of camera poses. This enables us
to establish clear floor boundaries, which are essential for
scene construction and co-visibility graph generation.

B. Annotation generation details

B.1. Co-Visibility annotation overview

As described above, with the 3D assets and depth infor-
mation provided in the dataset, the ground truth annotation
of co-visibility between two images should theoretically be
straightforward. However, this process is more complex
than it seems. We follow the dataset generation process
outlined in Sec. 3.3. First, while placing cameras and se-
lecting images, the image set must remain sparse, main-
taining both co-visibility space and maximum scene cov-
erage. Second, as a reasoning task, the annotations should
align with human perception while being automatically ap-
plicable to large-scale datasets. To ensure annotation accu-
racy and consistency, we curate a smaller, human-annotated
dataset, which serves as a human reasoning baseline for
benchmarking Co-VisiON and validating the correctness of
the automatically generated dataset.

B.1.1. Automatic co-visibility annotation

Camera pose placing strategy. While we could place cam-
eras anywhere within the navigable areas of a scene, we
select positions near walls or furniture to better mimic hu-
man photography behavior. This strategy aims to emulate
real-world scenarios, where photographers often position
themselves near peripheral areas to maximize coverage. As
shown in Fig. I, the red-bordered regions between black
obstacles and white navigable spaces indicate our preferred
camera locations. The cameras are generally oriented away
from walls to ensure comprehensive coverage, capturing a
wide range of visual features that aid both neural network
analysis and human interpretation.

Image selection criterion. First, to assess the scene cover-
age and the overlapping regions between any two images,
we convert the depth image into a point cloud in global co-
ordinates and use it in the subsequent scoring process. We
select images in progressive iterations by adopting a scoring
method to ensure we cover the entire scene with the fewest
possible photos. In each iteration, n,. randomly sampled
candidates are generated based on the camera pose placing
strategy where every candidate, n’, possesses observations
(RGB and Depth) along with the pose information of the
agent and its sensors. We then choose the highest-scoring
candidate based on the scoring function:

S=0a-0u+ -0, 2)

where O,, represents the newly explored region covered by
the projected point cloud, while O,, denotes the previously
explored region recorded from previous iterations. The «
and f are set to 0.9 and 0.1, respectively. This configuration
reflects a preference for camera poses that explore more of
the uncovered area.
After selecting the best candidate from n. possible candi-
dates based on the weighted score as in (2), we then remove
the positions near the best candidate (or within some radius
r) from the viable candidate selection area using equation
3):

d(pi,ps) <=r 3)

where d(.) represents the Euclidean distance between the
possible candidate location p; and the selected best candi-
date ps. This particular pruning is shown as light-orange
blobs in Fig. I. We observe that it is effective in covering
the scene faster and encouraging sparse image sets. We iter-
ate this data generation process until we explore more than
80% of the scene. All observations corresponding to the
selected best candidates as well as their pairwise IOU are
saved.

B.1.2. Human co-visibility annotation

Besides developing the automatic annotation method, we
also have human annotators manually label a subset of
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Figure 1. Dataset generation: Firstly, candidates are sampled from the possible locations shown as red border of the top-down map in
candidate selection. Then the sampled candidates, along with a scene coverage map and the current co-visibility graph, are used to calculate
scores for each candidate. The scores are computed with the best saved candidates from previous iterations. The top-scoring candidate
among the currently sampled is chosen to update scene coverage and the co-visibility graph. This process is repeated until a scene coverage
threshold is reached, at which point the best candidates’ observations with a co-visibility graph are saved to create the dataset.

Figure II. We are able to generate different scenarios for a single scene. This is an example of 5 scenarios generated for Scene Goff

scenes. The human annotation mirrors how humans reason
about spatial relationships and, therefore, serves two pur-
poses: it helps assess the quality of automatic annotation,
and more importantly, provides a human reasoning baseline
for benchmarking Co-VisiON.

The process involves 6 scenes arbitrarily chosen from the
automatically generated dataset from Sec. B.1.1. To facil-
itate human annotation, we develop a website with a GUI
that loads pairs of images within the same scene for the
trained annotators to determine if they can reason the co-
visibility of any pair of images, and click to label them ac-

cordingly. Images are uniformly sampled from the same
scenario to form a pair and presented to the annotators.

Given images I, I, € Z, the following criteria were con-
sidered for each pair:

* Shared objects: If I, and [} share the view of the same
objects such that an annotator can infer the two images’
relative pose, they are labeled as connected.

¢ Object Continuity:

If I, shows the left side of a sofa and I;, shows the right
side, even if the sofa is not fully visible in either image,
the partial views align in a way that the viewer can per-



ceive them as continuous, and spatially reason the images
as parts of the same object.

¢ Sub-Scene Relationship: one image may be a more
zoomed-in portion of the other. Or an image may have
details obstructed by objects in its view.

» Featureless Surface: If the overlapping region of I, and
I, is devoid of distinguishable features—such as a plain
wall—the pair is labelled as not connected. The absence
of features hampers the ability to establish a clear co-
visibility relationship between the images.

Along with the above criterion, this manual annotation pro-

cess undergoes a stringent cross-validation phase where

each scene is annotated at least twice by different annota-
tors. When it is challenging to identify relationships in am-
biguous scenarios, the images may be marked for further
review. The resulting sets of annotations are then compared
and discussed until a complete agreement is reached among
the annotators. In this way, we ensure the annotations of
spatial relationships are as precise and robust as possible.

We will release both the automatically labeled and the
manually labeled datasets to facilitate future research. The
human annotation website will also be released so that any-
one can extend the Co-VisiON task to a larger scale and for
more diverse scenarios.

C. Visualization of multiple scenarios from a
single scene

We can simulate different scenarios within the same scene
by manipulating the seed, resulting in distinct image com-
binations. In this supplementary, we present five scenar-
ios generated for Scene Goff through this approach shown
in Fig. II.

D. Evaluation metrics

As discussed in Sec. 3.2, we use IoU (Intersection over
Union) and AUC (Area Under Curve) as the evaluation cri-
teria which are mathematically defined as following.
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where A;; and A stand for the binary elements at the ith
row and jth column of the corresponding matrices of the
ground truth and predicted co-visibility graphs, G and G.
The A and V represent element-wise AND and OR opera-
tions respectively. A small constant € is added to the de-
nominator to avoid zero division.

Another metric that we use is Area Under Curve (AUC).
Formally, suppose A is the binary predicted matrix given
the threshold 7, and 7 is sampled from a discrete and or-
dered set {t1,ta,...,t,} from range [0,1]. The AUC is

computed as:

1 (IOU(A,A,, ) +IOU(A, A,
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E. Details and graph definition in DUSt3R ex-
periment

To evaluate the performance of co-visibility prediction un-

der different graph structures, we experiment with several

types of graphs in the DUSt3R benchmark. Each graph is
defined as follows:

* Complete graph refers to a graph where every pair of im-
ages is directly connected. However, due to its resource-
intensive nature, it becomes less practical for large-scale
reconstructions.

* Co-visibility graph is resource-efficient and maintains
geometric coherence, making it a viable alternative to the
Complete strategy.

» Star graph consists of a central frame connecting all
other images. This approach emphasizes a central per-
spective and proves valuable when a single viewpoint
dominates the scene.

* Ground Truth graph connects a pair of images in its
graph if they are within a predefined proximity. This
graph relies on the absolute pose obtained from the
ground truth for each pair of images.

In addition, we present a comparison of these graphs’ per-
formance in terms of 3D reconstruction accuracy and com-
putational cost. As shown in Fig. I1I, we visualize how each
graph affects image pairing during reconstruction. The ad-
vantages and limitations of each graph type, including as-
pects such as memory usage and scalability, are discussed
in detail in Sec. 5.1. This analysis helps justify our choice of
the co-visibility graph as the optimal solution for balancing
accuracy and computational efficiency.

F. Detailed definition of different graphs used
in CroCo experiment

We train a model to evaluate its performance over the co-
visible regions defined by different graph structures, includ-
ing: (1) High Co-visibility Graph, (2) Co-visibility Graph,
and (3) Random Graph.

* High co-visibility graph: This graph is created using the
pairs of images from a scenario with high spatial and vi-
sual overlap (>50%, or IoU i). Using a threshold i, it
selects pairs with significant overlap, focusing on high-
confidence spatial relationships. This graph aims to test
the CroCo model’s capability to reconstruct a masked tar-
get image using a reference image from a different per-
spective, particularly emphasizing close spatial relation-
ships.



(e) Star - Scene 2 (f) Covision - Scene 2

(g) Complete - Scene 2 (h) GT - Scene 2

Figure III. Two examples of 3D reconstruction results by DUSt3R, each based on distinct graphs.

* Co-visibility graph: The Co-Visibility graph of a sce-
nario is the same graph as discussed in Sec. 3.1 and
Sec. 3.3. This usually contains image pairs with both
high and low visual/spatial overlap connected by an edge.
From these pairs, we randomly select the same number of
edges as in the High Co-visibility Graph. This selection
ensures a balanced comparison, containing a mixture of
high and low co-visibility pairs. This graph is useful in
testing the CroCo model’s ability to reconstruct images
from a variety of perspectives, leveraging both high and
low co-visibility information.

* Random graph: The Random graph is constructed by
selecting all possible image pairs within a scenario, in-
cluding those with little to no spatial or visual overlap. A
subset of these pairs is randomly selected, ensuring the
number of edges matches that of the High Co-visibility
Graph. This diverse selection, which includes pairs with
minimal or no overlap, tests the CroCo model’s ability to
handle a variety of image combinations, challenging it to
perform well across more unpredictable scenarios.

G. Ablation Study of CoVis

G.1. Zero-shot Evaluation

We further evaluate the generalization ability of our Co-
vis by training on one dataset (either Gibson or HM3D)
and testing on both Gibson and HM3D individually. As
shown in Tab. I, Multi-view Covis consistently outperforms
pairwise Covis in both in-domain and zero-shot settings,
demonstrating better robustness to dataset’s domain shifts.
We also evaluate the predicted masks using the standard
IoU metric (not graph IoU), and achieve an average loU
of 67.3% against the binarized ground-truth masks.

Table I. Zero-shot evaluation of multi-view Covis and pairwise Co-
vis across different training and test sets.

Train Test Multi-view Covis Pairwise Covis
ToU AUC ToU AUC
Gibson  Gibson 0.56 0.52 0.51 0.47
Gibson ~ HM3D 0.51 0.48 0.48 0.44
HM3D Gibson 0.58 0.53 0.55 0.50
HM3D HM3D 0.52 0.48 0.50 0.46

G.2. Qualitative Result of Mask Prediction

We also visualize the ground-truth co-visibility masks be-
tween image pairs; which serve as additional supervision
signals during training, and the binary co-visibility masks
learned by Covis model in Fig. ['V.

(a) Scene 1 with Green Highlighted (b) Scene 2 with Green Highlighted
Overlap from Scene 2 Overlap from Scene 1

(c) Binarized GT mask for (a) (d) Binary predicted mask for (a)

Figure IV. Visualization of the co-visible region between a pair of
images (a) and (b), with (c) showing the binarized ground truth
mask and (d) the predicted mask on the image from (a).



H. Sim2Real

In this experiment, our aim is to demonstrate that the Co-
VisiON dataset exhibits a small domain gap compared to
real-world environments, such as the AVD dataset [4]. We
have tested Covis, ViT, VGG, Resnet, Contrastive, and
NetVlad methods on the AVD dataset using pretrained
model from Co-VisiON dataset. We observe AUC metric
results in Tab. II to be comparable to those in Tab. 3. Sim-
ilarly, from Fig. V, we can see that the co-visibility graph
predicted using the Covis closely resembles the manually
labelled topology graph.

Figure V. Comparison of manually labeled and Covis predicted
Topologies. For clarity, we show 10 sampled images to provide an
illustrative example.

Table II. Zero-shot comparison of AUC values (%) for baseline
models pretrained on the Co-VisiON dataset and evaluated on real-
world data.

Baseline Covis VIiT VGG ResNet Contrastive NetVlad
AUC 0.61 0.52 0.33 0.32 0.31 0.22
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