Supplementary

This supplement contains more ablation studies, time com-
plexities, and visualizations that could not fit in the study. In
particular, we include (1) extra examples on divergence vs
distance threshold, (2) time complexity for different meth-
ods, (3) discussions on SLAM methods, and (4) more visu-
alizations of selected keyframes.

A. Extra examples on divergence vs distance
threshold

We present additional examples comparing divergence
against distance threshold, comprising 4 examples on Habi-
tatSim and 3 examples on KITTI. Overall, this follows the
previous experiments conducted in Tab. [ and Tab. II, where
NetVLAD+SceneSum demonstrated the best results, fol-
lowed by PCL+SceneSum.

B. Time complexity for different methods

We present the time taken by both the baseline methods and
our approach in Tab. I and Tab. II. For non-learning-based
methods, self-supervised, and supervised methods, we only
consider the inference time for the test set. In contrast, for
autolabeling, the training time is included in the total time
calculation, as training is a crucial part of the optimization
process.

Table 1. Inference Time (seconds) for Habitat-Sim Dataset. (s)
represents the methods supervised by ground truth. (a) represents
the methods with autolabelling.

Scene Goffs | Micanopy | Spotswood | Springhill | Stilwell | Stokes
DR-DSN 63.376 27.983 30.089 37.623 38.099 | 22.257
CA-SUM 139.969 51.596 51.098 64.564 67.103 | 46.769
PySceneDetect 17.563 6.764 7.516 9.484 10.809 | 6.074
VSUMM NetVLAD 23.475 8.893 9.211 11.409 13.39 6.496
VSUMM PCL 20.03 9.702 9.85 13.002 12.156 | 7.713
NetVLAD+SceneSum 183.305 | 206.311 89.960 293.312 | 97.829 | 64.503
PCL+SceneSum 166.037 | 207.957 75.142 292.857 | 95.879 | 56.893
NetVLAD+SceneSum(S) | 194.999 | 166.694 128.187 383.043 | 95.815 | 58.244
PCL+SceneSum(S) 185.233 | 172.785 147.617 394.343 | 84.859 | 60.510
NetVLAD+SceneSum(A) | 148.894 | 149.157 81.360 304.567 | 78.026 | 54.432
PCL+SceneSum(A) 151.797 | 138.924 74.393 309.289 | 75.936 | 57.571

Table II. Inference Time (seconds) for KITTI Dataset. Other ab-
breviations follow by Tab. I

Scene KITTI(0018) | KITTI(0027) | KITTI(0028)
DR-DSN 16.775 16.017 18.354
CA-SUM 52.493 34.428 43.639
PySceneDetect 1.92 4.015 4.48
VSUMM NetVLAD 1.78 3.098 3.461
VSUMM PCL 1.462 2.432 2.898
NetVLAD+SceneSum 26.395 43.996 60.562
PCL+SceneSum 22.730 37.828 56.860
NetVLAD+Supervised 19.084 38.316 56.531
PCL+Supervised 18.183 34.909 52.305
NetVLAD+Autolabelling 17.350 34.002 50.562
PCL+Autolabelling 17.442 33.426 46.654

C. Discussions on SLAM methods

Some may argue that SLAM+KNN could easily solve this
problem. However, attempts to map entire scenes using

SLAM methods like OpenVSLAM were unsuccessful in
Habitat environments at a sampling rate of 1 frame per sec-
ond. In our study, OpenVSLAM faced a major challenge
with tracking loss, preventing the generation of a complete
map, as shown in Fig. .

(a) 3D Scatter Plot of Micanopy (b) 3D Scatter Plot of Spotswood
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Figure I. OpenVSLAM fails to create a complete map in Scene
Micanopy and Spotswood

We employ OpenVSLAM as one of our SLAM (Simulta-
neous Localization and Mapping) methods, but it frequently
experiences tracking loss during the map generation phase,
leading to disorganized and unstructured maps. This recur-
ring issue highlights a fundamental limitation of our current
SLAM approach, suggesting the need for further investiga-
tion and refinement to achieve reliable and well-structured
map generation.
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Figure II. Performance Analysis of Supervised Method, Self-
Supervised Method and AutoLabeling under Different Number of
Clusters in (a) Goffs (b) Micanopy (c) Spotswood (d) Springhill
(e) KITTI(0027) (f) KITTI(0028)

C.1. Ablation Study

Supervised vs Self-supervised. This section aims to de-
termine if introducing supervision loss results in significant
performance changes in the model. Fig. II presents the aver-
age performance of supervised and self-supervised methods
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Figure III. Comparison of Divergence vs Distance Threshold for
Habitat-Sim and KITTI dataset

on the Habitat-Sim and KITTI environments. It compares
these two models across six scenarios at cluster sizes of 10,
20, 30, and 40, using the AUC metric. Generally, the super-
vised model slightly outperforms the self-supervised model.
Notably, with 10 clusters, the supervised approach shows a
substantial improvement over the self-supervised one. For
other cluster sizes, incorporating ground truth data during
training offers only a slight performance boost. This high-
lights the robustness and effectiveness of self-supervised
SceneSum across various contexts, proving it to be a adapt-
able tool, especially in situations where ground truth data is
unavailable.

More VPR vs Contrastive-based clustering compari-
son. As discussed in Sec. 4.2, Tab. | and Tab. 3 again show
that SceneSum, when combined with VPR-based cluster-
ing, significantly outperforms contrastive-based clustering
in most scenes. This advantage is due to VPR’s abil-
ity to capture distinctive information about locations and
places, focusing on scene context and spatial relationships.
In contrast, the contrastive-based clustering method cap-
tures only visual information, making VPR-based cluster-
ing more suitable for scene summarization.

Divergence comparisons. Fig. IIla and I1Ib highlight
a significant trend in the performance of SceneSum ap-
proaches for scene summarization: as the distance thresh-
old increases, the divergence also rises across all methods.
NetVLAD+SceneSum consistently outperforms all baseline
methods at every distance threshold, showing stable perfor-
mance regardless of the distance evaluated. Additional re-
sults for more scenes are presented in Fig. IV

Table III. Best AUC results for different clustering on Habitat-sim

o [enshc“‘"e Goffs | Micanopy | Spotswood | Springhill | Stilwell | Stokes | AVG. | SD.
NetVLAD | 0050 | 0.117 0.146 0.002 0111 | 0.135 | 0.109 | 0.031
MixVPR | 0.084 | 0.179 0.194 0.094 0.084 | 0.140 | 0.129 | 0.045
Patch 0.053 | 0.098 0.121 0.102 0.073 | 0.119 | 0.094 | 0.024

Sec. 4.3, 44, and C.1 reveal a key finding: self-
supervised SceneSum exhibits strong summarization per-
formance when applied zero-shot to a new scene. In this
section, we explore the model’s auto-labeling capability. If
the time required for scene summarization is not a concern,
SceneSum can function as a network summarizer, summa-
rizing the scene video while simultaneously training on it.

Fig. IT shows that the auto-labeling results closely match
those of the self-supervised approach, confirming the effec-
tiveness of self-supervised inference. Even when compar-
ing self-supervised SceneSum to a version that overfits the
test dataset by training on it, the outcomes remain similar.

D. More visualizations on selected keyframes

We have presented more visualizations on selected
keyframes, including 5 Habitat scenes and 2 KITTI scenes,
as shown in Figure. V, Figure. VI, Figure. VII, Figure. VIII,
Figure. IX, Figure. X, and Figure. XI.
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Figure IV. Divergence vs Distance Threshold at 20 Summarized Frames
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Figure V. Selected keyframes in Habitat-Sim Dataset. We summarize 20 keyframes of 7 baselines on scene Goffs. All frames are
color-coded by temporal order. Summarized keyframes are marked with red crosses. Groups of frames that are geographically close to
each other are circled in yellow.
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Figure VI. Selected keyframes in Habitat-Sim Dataset. We summarize 20 keyframes of 7 baselines on scene Stilwell. The baselines and
annotations follow Fig. V
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Figure VII. Selected keyframes in Habitat-Sim Dataset. We summarize 20 keyframes of 7 baselines on scene Micanopy. The baselines
and annotations follow Fig. V
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Figure VIII. Selected keyframes in Habitat-Sim Dataset. We summarize 20 keyframes of 7 baselines on scene Spotswood. The baselines
and annotations follow Fig. V
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Figure IX. Selected keyframes in Habitat-Sim Dataset. We summarize 20 keyframes of 7 baselines on scene Springhill. The baselines
and annotations follow Fig. V
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Figure X. Selected keyframes in KITTI Dataset. We summarize 20 keyframes of 7 baselines on scene 0018. The baselines and annota-
tions follow Fig. V
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Figure XI. Selected keyframes in KITTI Dataset. We summarize 20 keyframes of 7 baselines on scene 0027. The baselines and
annotations follow Fig. V
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