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Supplementary Material

Here, we discuss additional details to the main paper.

1. Datasets

1.1. Psych-ImageNet
• The dataset has 293 known classes in total, excluding other

open-set classes to use at later studies.
• There are 40 classes with psychophysical labels, producing

a ratio of psychophysically-annotated to original classes
as in [10].

• There are 33,548 known training samples in total, and
12,428 samples have corresponding reaction times.

• Each data point has a reaction time, class label, and
ImageNet-sized (224x224) image associated with it.

• Reaction times collected (each reaction time is the amount
of time to choose a stimulus, given 5 other examples).
Responses in this data were collected for class recognition
against noisy stimuli.

Each trial was an object-matching task, where the human
participant of 5 opposed stimuli to it. Each image was from
one of the 293 Psych-ImageNet classes chosen for the task.
The participant had to select the object they thought belonged
to the top sample or rejected it together, should there be no
match. A timer collected the participants reaction time for
each question. Best viewed in color. An example of crowd-
sourced task pairings from [6] is shown in Fig. 1.

Classes were evenly distributed across trials, as were
positive vs. negative matches. Likewise, the difficulty of
experiments was variable to avoid a ceiling effect, a form of
scale attenuation in which the maximum performance mea-
sured does not reflect the true maximum of the independent
variable.

1.2. Psych-Omniglot

The Psych-Omniglot is a variant on the Omniglot dataset [7]
with psychophysical labels collected from the research in
[2]. The dataset contains images of handwritten characters
from hundreds of typesets, many of which a typical crowd-
sourced study participant would be unfamiliar with. The
data is augmented with counterpart samples for each image
with a deep convolutional generative adversarial network
(DCGAN) [4] to increase intraclass variance and the sample
size per class — all of which are forms of implicit regular-
ization. An example of crowd-sourced task pairings from [2]
is shown in Fig. 2.

In this dataset, human behavioral measurements were
gathered as reaction times to stimuli in crowd-sourced ex-
periments. Human participants were presented with two

opposing stimuli from the original Omniglot dataset (a Two-
Alternative Forced Choice task) and decided whether the
two stimuli were the same character in the dataset. The reac-
tion time from the participants was recorded automatically.
Broadly speaking about the dataset as a whole, these hu-
man reaction times were long on hard pairings, and short on
easy character pairings The introduction of this easy vs. hard
pairing would prove useful for supervised learning tasks.

1.3. Psych-IAM
The dataset is a modification of the IAM dataset [9] with
human behavioral measurements on lines of text collected
from [5] on about 35% of the dataset (2,152 lines).

In the main text, we report both word error rate (WER)
and character error rate (CER) for this dataset. The word er-
ror rate is a model’s error with respect to the individual word
on the line in the dataset, while the character error rate cor-
responds to the model’s fidelity with the human annotator’s
marks on the individual word.

The reaction time of the annotator to accurately record a
character and line was recorded in this annotated dataset [5].
For the main text, we used the reaction times in conjunction
with images of the text itself to perform transfer learning
OCR tasks with PERCEP-TL Fig. 2.

1.4. Dataset Limitations
We recognize that Psych-ImageNet only contains annotations
on 40 of the total 293 classes. While previous psychophysics
and machine learning studies suggest that this still remains
representative of the entire training distribution [5, 10], re-
action times on more classes may potentially yield better
results.

Likewise, Psych-Omniglot is a dataset in which the anno-
tations were collected via Amazon Mechanical Turk. While
the practitioners accounted for systematic errors, no crowd-
sourcing study is entirely robust to untrustworthy annotators
[11].

Lastly, Psych-IAM, along with the other two datasets, also
suffer from limits of overall numbers of available annotations
due to academic budget constraints.

2. PredNet Fine-Tuning
Similarly to Blanchard et al. [1], we extract the activations of
PredNet Fig. 3 after the convLSTM layers. PredNet works
with temporal data. First, we pre-trained it on videos from
the KITTI [3] self-driving dataset. We set up the annotated
Psych-ImageNet in an order of fixed frames and record the
activations of PredNet at the fixed time steps. This repre-



Figure 1. Crowd-sourced tasks from [6]. The above figure contains two screenshots from the worker data aggregator view in Amazon
Mechanical Turk. The image on the left contains an easy example where most annotators answered quickly and accurately; a model that fails
to answer in the same way receives a higher penalty. Likewise, the screenshot on the right contains a more difficult class, where a model
does not receive as harsh of a penalty for answering incorrectly.

Figure 2. Crowd-sourced tasks from [2]. An example two-
alternative forced choice OCR task as seen from the participant’s
view. Labels (d) and (f) represent character pairs where the class
labels differ; the rest represent the same class pairing. The blurred
and noisy images lead to more informative psychophysical labels
for operationalization within the machine learning task during train-
ing.

sentation at each neuron works like a supervised model’s
neuron in that we can add psychophysical transfer learning
to it to regularize the learning representation.

The loss defined by PredNet is as follows:
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where λt is a regularizer at the time step, λl

nl
is a regular-

izing factor at a given layer in the network, and Et
l is the

error at a time step 2.
Indeed, the loss formulation for PredNet is inherently

more complex than cross-entropy loss variations. For
brevity, we conducted experiments to understand in which

Figure 3. The PredNet[8] architecture.

term should the psychophysical regularization variables be
used Again, each of the three terms uses a form of ℓ1-
normalization to adjust model learning generalization.

We observe that multiplying psychophysical transfer
learning into the layer term λt — with the variable Ât yields
the best results. In other words, after successive outputs of
each layered convLSTM, we see performance gains more
vividly than any other term within this loss. Furthermore,
the regularization effect of psychophysical transfer learning,
the softening of sharp gradient turns, pronounces the most
at longer time steps on average (e.g. at steps > 5). As table
Tab. 1 suggests, the loss mostly benefited from psychophysi-
cal transfer learning regularization on the outputs between
step outputs Ât at times t Tab. 2.

This result suggests that predictive coding networks in
some way manage the latent ideals encoded in the psy-
chophysical transfer learning data.

While this experiment step was not part of the model-
evaluative, we believed it important to fine-tune psychophys-
ical transfer learning on a non-traditional loss framework



Psych-ImageNet MAE
Method PredNet

Control 0.59 ± 0.03
ℓ1 0.62 ± 0.02
ℓ2 0.61 ± 0.03
Dropout 0.61 ± 0.05
Dropout+ℓ1 0.61 ± 0.02

RegularPsych 0.64 ± 0.04
RegularPsych+Dropout 0.65 ± 0.02

Table 1. On models using RegularPsych as an evaluator, we
see improved mean squared error reduction. All models were pre-
trained on KITTI and evaluated on the house dataset. We computed
error bars using standard error across 5 seeds. Lower is better.

Psych-ImageNet Psych-Omniglot

Parameter Train Error Train Error

None 0.12 ± 0.03 0.20 ± 0.05
At 0.11 ± 0.04 0.19 ± 0.05
Ât 0.06 ± 0.02 0.17 ± 0.04

Table 2. The table shows the train errors for each parameter se-
lection of which PredNet architecture layer to multiply by the
RegularPsych variable. The None column assumes a cross-
entropy loss without any modification to the PredNet loss. The input
layer At shows no significant change in performance, regardless of
what the psychophysical annotations are. However, we see a signif-
icant reduction in training error when applying RegularPsych to
the model prediction logits Ât.

before conducting experimentation on the relative effects of
psychophysical transfer learning on model-evaluative perfor-
mance.

The pre-training of PredNet and the subsequent transfer
to task to a frame-by-frame prediction on the modified Psych-
ImageNet allows for the beneficial usage of psychophysical
transfer learning. While this case is a niche, it demonstrates
the viability of utilizing psychophysical transfer learning in
a variety of future neurologically-inspired models.

3. Model Ablations
In Tab. 3, we report ablation results on the PERCEP-TL
transfer learning tasks. These show some additional transfer
learning movements among different tasks in the experi-
ments. For example, the first row of the figure represents the
task shift, where the color of the ψ represents the domain
the psychophysical labels were gathered on. Not all domains
transfer well, but there exist several domains where transfer
learning works naturally.

In this work, it remains apparent that the object recog-
nition task and psychophysical labels from models learned

on Psych-ImageNet transfer well to the other domains used
in this study. In rows 1 and 3 in Tab. 3, we see the largest
gains supported by this. Likewise, the transfer of domains
from Psych-IAM character annotation tasks to generic ob-
ject recognition, in line with commonsense, does not transfer
well.

In future studies, we plan to explore different learning
paradigms (e.g. reinforcement learning) to expand the results
of transfer among domains.



orig. + new + %diff orig. + new + %diff orig. + new + %diff orig. + new + %diff
Transfer Task ResNet VGG ViT PredNet

ψ→ ψ 0.79 0.81 +1.5% - 0.83 0.85 +1.9% 0.63 0.65 +1.2%
ψ→ ψ 0.74 0.75 +0.4% 0.76 0.76 +0.4% 0.78 0.79 +0.7% 0.65 0.65 +0.1%
ψ→ ψ 0.91 0.92 +0.9% 0.81 0.02 -0.5% 0.86 0.88 +1.2% 0.64 0.65 +1.1%
ψ→ ψ 0.74 0.73 -0.6% 0.76 0.76 +0.2% 0.78 0.77 -0.5% 0.65 0.62 -3.1%
ψ→ ψ 0.91 0.91 +0.4% 0.81 0.81 +0.1% 0.86 0.86 -0.1% 0.65 0.66 +1.2%

Table 3. Transfer learning % difference table. With psychophysical transfer learning, performance increases by as much as 1.9%. Each
row represented in this table represents a difference transfer learning task, denoted by ψ corresponding in color with the dataset used. Each
trial is the standard error across 5 seeds. Note: using accuracy as 1− CER on Psych-IAM trials in this table. Higher is better.
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