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Abstract

This supplementary file presents further details and addi-
tional results of the proposed method. These results il-
lustrate further outcomes of the user study. Subsequently,
the preliminary prototype of the method applied to AR/VR
headsets are illustrated. Finally, further qualitative results
of the perceptual model are presented to demonstrate the
efficacy of the method.

A. Subjective Quality Study Setup
Setup. For our experiments, we assumed standard office
conditions where the content is viewed on a 27-inch Dell
U2723QE display with a resolution of 3840 × 2160 and a
peak luminance of 400 cd/m2, from a viewing distance of
60 cm. All our results are calculated according to this setup.
During our experiments with human subjects, the viewing
distance was controlled with the use of a chin rest that al-
lowed to maintain constant viewing conditions throughout
the experiments for all participants.

B. Additional Subjective Quality Results
B.1. Channel Depth Application
For this experiment, we used the same scenes as described
in Sec. 5. We up-scaled the images using a set of EDSR net-
works. We trained 5 different networks, with either (256,
128, 64, 16, 8) channels per-layer. The baseline was an
EDSR with 256 channels per layer applied uniformly across
the whole image. The baseline was compared with SR con-
trolled using our perceptual model, which selected one of
the 5 candidate networks per each patch. Fig. 1 shows the
results of our 2AFC user study, it can be seen that on av-
erage, the preference value hovers around 50%, which is
indicative that users wone average not able to perceive any
difference between the test cases A and B in relation to the
reference. The indicates that our perceptual model con-
trolled the results such that any quality loss is not visible,
while using 76.4% less FLOPS.

B.2. Video Content
Setup and Task The same experimental protocol as de-
scribed in Sec. 5 was employed for this experiment.
Stimuli The stimuli were derived from seven natural videos
from the Inter4k [4] dataset.
Data preparation Each video frame was down-sampled by
a factor of eight and then up-sampled by a factor of four us-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Scene

0.0

33.0

49.07

67.0

100.0

U
se

r
p

re
fe

re
n

ce

2AFC quality study

Average Preference

Ours (76.4% less FLOPS)

Original network

Figure 1. The result of our subjective study (for 9 participants) for
the network channel depth application.

1 2 3 4 5 6 7
Scene

0.0

14.0

29.0

43.0

52.04
57.0

71.0

86.0

100.0

U
se

r
p

re
fe

re
n

ce

2AFC quality study for videos

Average Preference

Ours (51.3% less FLOPS)

Original network

Figure 2. The result of our subjective study (for 14 participants)
for the network branching application for videos.

ing the VDSR network, specifically the network branching
application.

Fig. 2 shows the findings of our 2AFC user study. It can
be observed that the mean preference is around 50%, which
suggests that users were unable to perceive a difference be-
tween test cases A and B in relation to the reference, even
when our method uses 51.3% less FLOPS.

B.3. Information about participants

All participants were recruited from CS department, aged
20 to 30. The network branching user study was conducted
with a total of 15 participants (4F, 11M). The channel depth
user study was conducted with a sample of 9 participants
(3F, 6M)). Finally, the network branching applied to videos
user study was conducted with 14 participants (3F, 11M).
They had normal or corrected-to-normal vision and were
unaware of the experiment’s purpose.



C. FLOPS for evaluation and performance
bottleneck

We decided to use the average FLOPS for efficiency due to
its universality, independence from specific machine char-
acteristics and implementation, as well as the fact that this
measure has been used in similar studies [2, 3, 5, 7]. In
our method patches that require the use of a network with
larger size/capacity could be considered as a bottleneck, and
in such a case, using the average FLOPS does not convey
this information. A wall clock time elapsed could be con-
sidered a better measure of performance, for our method
we would like to stress that the execution of the full net-
work will not necessarily be the bottleneck. In scenarios
where the number of processors is smaller than the num-
ber of patches, scheduling will take care of evenly distribut-
ing the load. A solution to further distribute the load more
evenly would be to consider multiple consecutive frames for
processing. Furthermore, it is possible that no patch in an
image requires full network, and the full network will never
be used.

D. Framework input
The input patch size (size of patches into which the image
is divided, as shown in Fig. 3) to our HVPF is equivalent to
the size of the receptive field of the upsampling model em-
ployed. In the case of the VDSR network, the input patch
is 40

k × 40
k pixels. This is due to the fact that, during the

HVPF prediction, the low-resolution image is being con-
sidered. Before being conveyed to the VDSR network, the
LR image is upsampled through bicubic interpolation. Con-
sequently, in the event of ×4 upsampling, the input to the
HVPF is 10x10 pixels, corresponding to a patch of 40x40
pixels in the image upsampled with bicubic interpolation.
In the case of the EDSR network, the input patch is 48 ×
48 pixels, taken from the low-resolution image. As no prior
upsampling is involved in the input image, there is no need
to consider a lower-size patch. In certain instances, utiliz-
ing input patches smaller than the neural network’s recep-
tive field may be advantageous, particularly in the context
of smaller images.

E. Extension - AR/VR Display
Next generation standalone virtual/augmented reality head-
sets demand high spatial quality, refresh-rate and power ef-
ficiency in real-time. Our framework can be applied for
gaze-contingent super-resolution for AR/VR headsets. The
main justification is that for wide field-of-view displays,
human visual acuity decreases significantly away from the
gaze-location (fovea). This inhomogeneity is frequently as-
sociated with the distribution of retinal cells across the vi-
sual field, as demonstrated by [1, 6].

Contrast sensitivity models such as the StelaCSF appro-
priately model human contrast perception as a function of
eccentricity, and thus can extend our model to account for
acuity across the visual field. Modern VR/AR headsets have
built in eye-trackers that can be used to control our frame-
work. In Fig. 3, we present some preliminary results for
our quality map estimation with different gaze positions on
the screen. The top row shows the eccentricity map relative
to the gaze location, and the bottom row shows how our
prediction for required SR quality varies. As anticipated,
our perceptual model predicts that higher quality resolution
will be used when the user is looking, while for areas in the
periphery, our model predicts that the lowest up-sampling
quality will be used. The main application is rendering in a
lower resolution throughout the field of view, and then up-
sampling the rendering for real-time VR/AR displays using
our technique.

F. More Qualitative Results

This section presents additional qualitative results, demon-
strating our perceptual model predictions. Fig. 4 shows the
maps generated by our method, illustrating the selective de-
ployment of higher-quality reconstruction networks in re-
gions of greater detail and contrast, and the use of lower-
quality reconstruction networks in areas with less detail and
contrast. A comparison of the SR results of the proposed
method with those of the original networks is presented
in Fig. 5. Furthermore, visual SR results of the proposed
method and of the original network is also presented in
Fig. 6,7,8,9.
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Figure 3. Our model predictions based on gaze position with ×4 super-resolution. In the first column, we have the original image and
the corresponding quality map. In the other columns we have on top the eccentricity map expressed in degrees and bottom we have the
corresponding quality map.
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Figure 4. Our method quality map prediction results for ×4 upsampling.
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Figure 5. Visual results of our method compared to the original networks. On the right, we can observe the maps produced by our
perceptual model.

(a) Original Network (b) Our method

Figure 6. The SR result (×4) of VDSR network and our method applied to VDSR network for image DIV2K-0885.



(a) Original Network (b) Our method

Figure 7. The SR result (×4) of VDSR network and our method applied to VDSR network for image DIV2K-0878.

(a) Original Network (b) Our method

Figure 8. The SR result (×4) of VDSR network and our method applied to VDSR network for image DIV2K-0850.



(a) Original Network (b) Our method

Figure 9. The SR result (×4) of VDSR network and our method applied to VDSR network for image DIV2K-0815.
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