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A. Comparison of EEG Encoding Methods

In this study, we compare the performance of the Semantic
Region-aware Transformer (SRT) with various EEG-based
models. The competing models are widely used in EEG
signal analysis and encompass diverse neural network-based
approaches.

ShallowNet [9] and DeepConvNet [9] use convolutional
architectures designed specifically for EEG tasks. Shal-
lowNet captures basic spectral EEG features using simple
convolutional layers, while DeepConvNet employs multi-
ple convolutional and pooling layers to extract hierarchical
temporal and spatial features from EEG data.

EEGNet [6] employs a compact convolutional neural net-
work architecture with depthwise and separable convolutions,
effectively capturing frequency-specific spatial representa-
tions and achieving generalizability across multiple EEG
paradigms with fewer parameters.

ATCNet [1] integrates temporal convolutional layers with
multi-head self-attention modules, effectively encoding low-
level spatial-temporal features and subsequently highlighting
essential temporal segments through attention mechanisms.

EEGConformer [11] combines convolutional modules
with Transformer-based self-attention layers, effectively in-
tegrating local and global temporal features to improve the
classification performance by capturing extensive temporal
dependencies.

TSCeption [4] focuses on EEG-based emotion recogni-
tion, leveraging multi-scale temporal kernels and asymmet-
ric spatial convolutional layers to effectively capture both
temporal dynamics and the asymmetric spatial activations
relevant to emotional processes.

NICE-EEG [12] utilizes a Temporal-Spatial Convolution
(TSConv) architecture as its EEG encoder. The TSConv ap-
plies sequential temporal and spatial convolution layers to
extract EEG representations, allowing the model to effec-
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tively capture both local temporal features and cross-channel
spatial dependencies.

ATMS-S [7] utilizes a Channel-wise Transformer encoder
along with Temporal-Spatial convolution to model both spa-
tial and temporal dependencies in EEG signals. The Channel-
wise Transformer captures inter-channel relationships, while
the Temporal-Spatial convolution enhances feature extrac-
tion by preserving EEG’s temporal structures. This architec-
ture is designed to improve EEG-based classification and
decoding tasks.

B. Topological Analysis on EEG Encoder

To validate the neural plausibility of our EEG embeddings,
we analyzed topographic maps of EEG regional represen-
tations across all subjects from both the EEG-to-Image
and EEG-to-Text encoders. Specifically, the EEG-to-Image
encoder initially shows posterior and occipital activation,
which progressively shifts toward central and frontal regions,
reflecting the hierarchical neural dynamics from early vi-
sual feature extraction to object recognition and perceptual
decision-making [2, 3, 5]. In contrast, the EEG-to-Text en-
coder exhibits anterior-temporal and fronto-temporal activa-
tions, consistent with established neural signatures of seman-
tic retrieval and language comprehension [8, 10]. This clear
modality-specific differentiation offers empirical neuroscien-
tific validation of our Semantic Region-aware Transformer
(SRT) Encoder, underlining its effectiveness in extracting
semantically meaningful EEG embeddings for accurate mul-
timodal decoding.

C. Extended Evaluation of EEG-Based Image
Generation and Limitation

We conducted additional comparative experiment with Cog-
nitionCapturer [13], a recent state-of-the-art framework for
EEG-based visual brain decoding which reconstructs visual
stimuli by leveraging three modalities: image, text, and depth.
For a fair comparison, we averaged the performance across
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Figure Al. EEG-based retrieval performance comparison with competing methods. Left: Subject-dependent setting. Right: Subject-
independent setting.

Subject Dependent Subject Independent
Image Text Image Text
Models Top-1  Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
ShallowNet [9] 4.0 15.0 24.0 3.1 11.5 19.2 7.1 229 36.0 4.0 16.2 26.0
DeepConvNet [9] 9.9 31.3 45.5 6.6 21.7 33.6 73 23.8 36.5 44 15.7 25.6
EEGNet [6] 15.7 44.5 60.1 10.0 32.6 47.2 7.5 244 37.7 5.1 17.2 28.0
ATCNet [1] 15.5 42.0 57.3 9.0 30.0 444 9.7 28.7 415 5.1 19.0 30.1
EEGConformer [11] 16.6 44.1 59.7 10.5 31.8 464 9.7 28.9 414 5.7 19.1 29.7
TSCeption [4] 8.9 28.0 42.4 5.6 19.8 31.7 6.6 224 342 4.0 15.8 26.3
NICE-EEG [12] 20.6 53.2 67.4 14.3 40.1 55.0 11.7 33.0 46.3 7.2 223 33.6
ATM-S [7] 23.0 56.2 70.7 15.0 40.4 56.6 11.6 31.7 45.0 73 22.0 34.5
SRT (Ours) 26.3 59.5 73.0 17.5 45.1 61.5 13.8 371 52.3 8.6 25.3 38.9

Table Al. EEG-based image and text retrieval performance comparison with competing methods.
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Figure A2. Visualization of topographical maps from the EEG-to-Image encoder (top row) and EEG-to-Text encoder (bottom row), displayed
across successive 100 ms time windows (0—1000 ms). Red and blue regions denote relatively higher and lower activation, respectively,
underscoring the distinct spatiotemporal activation patterns associated with each encoder.
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all subjects. As shown in Table A2, the experimental results Our SeeEEG substantially outperformed the state-of-the-
not only demonstrate that our proposed method outperforms art methods [7, 13] on high-level semantic metrics (AlexNet,
competing method on most evaluation metrics, but also show Inception, CLIP, and SwaV), while exhibiting relatively

the generalizability of our proposed method. lower performance on low-level metrics (PixCorr and SSIM),
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Figure A3. Example retrieval results from ILSVRC dataset using image-aligned EEG embeddings. Each row begins with the visual stimulus,
followed by the top five most similar images retrieved from the the dataset.

as shown in Tables 3 and A2. This discrepancy can be at- tributed to the fact that image retrieval from the external



Table A2. The quantitative comparison of generation performance
with the state-of-the-art method. All results are averaged across all
subjects.

Methods  PixCorrf  SSIM?T  AlexNet(2)T AlexNet(5)T Inceptiont CLIPT SwAV|
[13] 0.15 0.347 0.754 0.623 0.669 0.715  0.590
Ours 0.11 0.335 0.782 0.861 0.724 0.795  0.573

reference database is primarily driven by semantic similarity,
which does not necessarily ensure pixel-level or structural
resemblance between the ground truth and the generated
images. To mitigate this limitation, we plan to develop a
retrieval algorithm that incorporates structural similarity and
to explore brain encoding methods that more effectively
leverage low-level visual information encoded in the brain.
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