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Figure 1. Given 2D instances in images, we propose a method to lift them into 3D, enabling edits under the local rigidity assumption. This
approach facilitates large view changes, non-rigid deformations, and interactive, real-time operations for more efficient user control.

Abstract

Generative models have achieved significant progress in ad-
vancing 2D image editing, demonstrating exceptional pre-
cision and realism. However, they often struggle with con-
sistency and object identity preservation due to their in-
herent pixel-manipulation nature. To address this limita-
tion, we introduce a novel "2D-3D-2D” framework. Our
approach begins by lifting 2D objects into 3D representa-
tion, enabling edits within a physically plausible, rigidity-
constrained 3D environment. The edited 3D objects are
then reprojected and seamlessly inpainted back into the
original 2D image. In contrast to existing 2D editing meth-
ods, such as DragGAN and DragDiffusion, our method di-
rectly manipulates objects in a 3D environment. Extensive
experiments highlight that our framework surpasses previ-
ous methods in general performance, delivering highly con-
sistent edits while robustly preserving object identity.
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1. Introduction

The rapid advancements in deep generative models have
fundamentally transformed digital image editing, moving
beyond traditional techniques such as filters and color ad-
justments. These models now provide users with sophisti-
cated tools to manipulate image content with unprecedented
precision and realism, enabling direct edits through text-
based prompts [4, 32] or reference-based guidance [15, 31].
This evolution has driven significant progress in the field
of image editing, propelled by the growing capabilities of
generative models. Despite their advancements, most exist-
ing approaches rely on high-level semantics derived from
language or images as control signals, which often lack the
granularity required for precise, fine-grained control over
image details. Incorporating interactive controls with in-
termediate editing results offers a promising solution, en-
abling real-time feedback that facilitates more accurate ad-
justments and flexible refinements.

While some recent works, such as DragGAN [22] and
DragDiffusion [25], enable interactive image edits by al-
lowing users to pick and drag control points, these meth-
ods are constrained to editing a limited range of categories,
largely due to the restricted capabilities of their data-driven
generative models. Moreover, both DragGAN and DragDif-
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fusion operate as 2D image models, “manipulating” pixel
data rather than addressing the underlying 3D structure of
objects. This limitation affects consistency and the preser-
vation of object identity in the edits. We hold that a more
intuitive approach to image editing should involve directly
manipulating objects in 3D space like a sculpture. This
method aligns more closely with human understanding of
the 3D physical world, enabling more efficient and effec-
tive editing to achieve desired results with greater control
and accuracy.

To achieve this goal, we propose a pipeline consisting
of several steps: lifting 2D objects to 3D, editing 3D ob-
jects under a physically plausible rigidity assumption, po-
sitioning the 3D objects, and inpainting them back into the
original image. First, we employ SAM [16] to segment the
target object in the image. Next, we leverage the state-of-
the-art 3D generation method, TRELLIS [29], to produce
a 3D Gaussian Splatting (3DGS) [14] representation of the
object. This approach is chosen for its real-time render-
ing capabilities and high visual quality. Using the gener-
ated 3DGS, we develop a real-time interactive editing al-
gorithm that deforms the 3DGS under a local rigidity as-
sumption, ensuring structural preservation and physical fi-
delity. Sparse control points are sampled from the 3DGS
point cloud, and neighboring points are connected to con-
struct a topology-aware graph. We then optimize the local
rigid energy with editing constraints, which drives the de-
formation of the dense 3DGS. Once the 3D object has been
edited, it is placed back into the image at the specified 6DoF
pose (translation + rotation). Finally, the surrounding region
is inpainted to ensure the results are visually harmonious.

Our main contributions can be summarized as:

We propose a novel and comprehensive framework for
3D-aware object editing from a single 2D image. This
framework enables large-scale 3D deformation and place-
ment while preserving object identity far better than 2D-
based methods.

We develop a real-time interactive 3DGS algorithm to
achieve this goal. By leveraging a rigidity assumption
and sparse graph modeling, our method enables real-time
editing of 3DGS with physically plausible effects.
Through extensive experiments, we demonstrate that our
approach produces high-fidelity, 3D-consistent results
across a wide variety of objects, significantly outperform-
ing prior methods in both realism and user control.

2. Related Work

Our work rethinks 2D image editing by lifting editable ob-
ject instances into 3D space, enabling geometry-aware ma-
nipulation and coherent reintegration within the original
scene. We review related works in three interconnected do-
mains: 2D image editing with generative models, lifting 3D
geometry from single images, and 3D-aware object editing.
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2.1. 2D Image Editing with Generative Models

Classical methods. Traditional image editing methods pro-
vided algorithmic tools for tasks such as inpainting, resiz-
ing, and compositing. Notable examples include Navier-
Stokes inpainting [2], seam carving [3], and Poisson blend-
ing [1]. While effective in controlled cases, these methods
often fail to capture the semantic or geometric structure of
complex scenes.

Learning-based image editing. The introduction of deep
generative models brought greater flexibility and realism to
image editing. GAN-based frameworks like Pix2Pix [9],
CycleGAN [7], and StyleGAN [12] enabled tasks such
as image-to-image translation and latent space manipula-
tion. These methods support applications like facial con-
trol or style transfer, though they may struggle with fine-
grained control and even out-of-distribution generalization.
Diffusion models have further advanced editing capabili-
ties, offering improved stability and fidelity. Stable Diffu-
sion [24] and DALL-E 2 allow high-quality synthesis from
text prompts, while Prompt-to-Prompt [10] and Instruct-
Pix2Pix [4] introduce more localized, controllable edits.
ControlNet [33] enhances diffusion-based editing by incor-
porating spatial conditions such as edges, poses, or depth.
Despite their strengths, these models remain fundamentally
2D and lack mechanisms to enforce 3D consistency.
Interactive point-based editing. Recent systems such as
DragGAN [23] and its diffusion-based extensions [21, 25]
offer interactive control over image content through point
pairs. These tools enable users to specify the movement
or deformation of an object, yielding visually striking out-
comes. However, the manipulation occurs entirely in the
image plane, without explicit modeling of depth. Such lim-
itations make it difficult to maintain physical plausibility,
particularly for edits involving large viewpoint changes.
Our perspective. Unlike the methods above, our approach
lifts object edits into a 3D-aware space. By reconstructing a
geometry-consistent representation of the object, we enable
edits that align with the underlying structure of the object
and preserve coherence during reintegration.

2.2. Single-View Lifting from 2D to 3D Space

Estimating 3D structure from a single image has long been a
fundamental problem in computer vision. Early deep learn-
ing approaches aimed to recover explicit shapes, such as
voxel grids or surface meshes [6]. More recent work has
shifted toward implicit neural representations, which tend
to generalize better and produce smoother results. The in-
troduction of Neural Radiance Fields (NeRF) [19] marked
a turning point for view synthesis, although it originally re-
quired multiple views of a scene. Follow-up work gradually
adapted NeRF to settings with fewer or even single images.
For instance, Zero-1-to-3 [17] uses large-scale diffusion
models to generate novel views from just one input image,
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Figure 2. Our method involves lifting 2D instances into 3D space, editing them under the assumption of local rigidity, and then repositioning
them back into the desired locations before inpainting them into the images.

capturing a strong sense of object geometry. Meanwhile,
3D Gaussian Splatting [13] provides an efficient and high-
fidelity way to represent and render scenes using explicit
point-based primitives. These developments have made it
feasible to lift a single image into a 3D-aware representa-
tion. In our case, this capability is not used for rendering
new views, but instead forms the basis for editable object
manipulation and seamless re-integration within the origi-
nal scene.

2.3. 3D-Aware Object Editing

3D-aware editing aims to modify image content in ways that
are consistent with the underlying geometry of the scene.
One line of research focuses on 3D-aware generative mod-
els, such as EG3D [5], which offer explicit control over
object pose and appearance. These methods are typically
trained on narrow object categories like faces or cars, and
their ability to generalize to arbitrary scenes is limited. An-
other direction explores scene-level editing using volumet-
ric representations. Instruct-NeRF2NeRF [8] allows users
to edit a NeRF scene through text prompts, but such edits
affect the entire scene rather than individual objects. Our
work addresses a different setting. Given an image, we
isolate an arbitrary object, lift it into a 3D representation
that supports editing, and then reinsert the modified object
into the original scene. To restore occluded regions, we
leverage powerful modern inpainting models [28], allowing
the final composite to remain coherent and visually plau-
sible. This object-centric, compositional approach enables
geometry-aware editing of in-the-wild images without re-
quiring category-specific priors or multi-view input.

3. Method

The pipeline of our method, as illustrated in Fig. 2, com-
prises the following steps: instance segmentation, 2D-to-3D
generation, 3D editing, and inpainting the rendered edits of
3D shapes back into the image.

3.1. Lifting 2D Instances to 3D Space

Unlike existing image-based editing techniques that manip-
ulate pixels in 2D space using generative models such as
GAN:Ss or Diffusion, our approach focuses on editing 2D in-
stances by crafting them as 3D objects. This method pro-
vides a more intuitive and human-aligned understanding of
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the physical world. The process begins by identifying the
instances to be edited and lifting them into 3D space as a
3D representation.

Aiming at this goal, given an image containing instances
to edit, we first employ SAM [16] to isolate each individual.
The resulting segments are then cropped to center these in-
stances. These cropped images are subsequently processed
using the off-the-shelf 3D generation model TRELLIS [29],
which produces the 3D Gaussian Splatting (3DGS) [14]
representation, chosen for its fast rendering speed and high
visual quality.

The obtained 3DGS is represented as a set of Gaussian
kernels G; : (ui, 0, 8i,qi, ¢i), where p; € R?® denotes the
center of the Gaussian, o; € RT represents the opacity,
s; € RT3 corresponds to the scaling factors along the 3D
axes, and ¢; € R* is the quaternion representing the SO(3)
rotation of the Gaussian.

3.2. Physics-Sensible Interactive Editing

With the 3DGS representation G; : (u;, 04, Si,qi,¢;) in
hand, the next step is to efficiently edit it while ensuring
adherence to physically plausible constraints. To achieve
this, we adopt the concept of ARAP [11, 26], enabling in-
teractive editing of 3DGS while maintaining the physical
prior that each local part of the 3D shape preserves as much
rigidity as possible. This approach applied to 3DGS ensures
that the edited results undergo plausible deformations while
strictly adhering to user-defined constraints.

Since 3DGS contains millions of Gaussian primitives to
accurately approximate the target object, performing defor-
mation based on per-Gaussian analysis is computationally
prohibitive for real-time interaction and memory efficiency.
To address this, we derive a set of coarse control points
evenly distributed over the 3D shape using farthest-point
sampling on the Gaussians. During our experiments, the
number of control points is set to 512. Denoting control
point positions before deformation as p; and their deformed
positions as p}, we define the local rigidity energy as:
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where R; is the estimated rotation of the local cell cen-
tered at p;, N7 is the neighborhood of p; consisting of



K = 8 nearest neighbors, and ws:j represents the impor-
tance weight of p; relative to p;. This energy term is
both translation- and rotation-invariant, penalizing any lo-
cal non-rigid deformation. Rather than directly applying K -
nearest neighbors (K-NN) in Euclidean space, we first use
%-nearest neighbors to connect control nodes and construct
an initial graph. Then, we compute the K-NN based on the
shortest path distances within this graph. As illustrated in
Fig. 3, this approach preserves the topology of the final con-
nected graph by preventing control nodes from linking to
overly distant points from separate regions.

Euclidean KNN

Figure 3. Graph better preserves topology than the Euclidean.
When the user interacts with the system by clicking on
the image and dragging H selected control points to reposi-
tion them in 3D space, we impose strict constraints on these
handle points:

where h; denotes the indices of the selected control points.

The term in Eq. 1 can be interpreted as penalizing de-
viations in relative positions, centralized by the Laplacian
matrix and rotated by the estimated local rotation. This can
be expressed as:

3)
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vector, and L is the Laplacian matrix, which centralizes po-
sitions relative to their weighted neighboring centers. The
minimization of Eq. 3 can be solved linearly using the in-
verse or pseudo-inverse of L, depending on the constraint
setup. The rows and columns corresponding to h; in L and
the rows in b are removed to solve for the unconstrained
points, while the constrained points remain fixed at user-
defined positions.

The local rotation R; is estimated using Singular Value
Decomposition (SVD) on the matrix [27]:

Si= Y wij(p; —p)" () — p}).
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By performing SVD on S; = U;%; VT, the local rotation
R; is computed as R; = V;UT .

The entire solving process is performed iteratively by al-
ternating between optimizing p’ and updating R;, gradually
converging toward a global optimum [20]. In practice, three
iterations are sufficient to achieve satisfactory results.
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Finally, the deformation of Gaussians is driven by their
neighboring control points using a Linear Blend Skinning
(LBS) [18] approach. We express the deformation of Gaus-
sian parameters as:

=Y Wiy (Ry (s —pj) + 1)),
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Here, N; represents the K = 3 nearest control points to
the i-th Gaussian, and w;; are weights that decay with dis-
tance. This method ensures smooth, physically plausible
deformations of the Gaussian representation while respect-
ing user-defined constraints.

3.3. 3D Object Placing and Inpainting

The final crucial step in our pipeline is to seamlessly rein-
tegrate the edited 3D object back into the 2D image. The
drop stage involves two concurrent processes: restoring the
background occluded by the original object and rendering
the edited object for final composition. The goal is to pro-
duce a coherent and photorealistic image of the manipulated
instance placed in the original image.

Lifting the target object from the image inevitably leaves
a “hole” in the background where the object was previ-
ously located. To create a plausible scene for re-integration,
this occluded area must be semantically restored. We ac-
complish this using the initial segmentation mask generated
by SAM. This mask precisely defines the region requiring
inpainting. We then employ a state-of-the-art resolution-
robust inpainting network to fill the designated area. The
network takes the masked image as input and synthesizes
the missing background content, ensuring contextual and
structural consistency with the surrounding pixels. This
process results in a complete and clean background plate,
ready to receive the edited object.

Concurrently, the manipulated 3D Gaussian Splat-
ting(3DGS) model is rendered back into a 2D image from
a consistent viewpoint. The final composition begins with
a standard alpha blending of the rendered object onto the
inpainted background. To eliminate any unnatural seams
at the object’s boundary, we perform a targeted inpainting-
based refinement. A dilated mask is generated around the
object’s contour to isolate the transition area. This masked
region is then inpainted using prompts like ”seamless inte-
gration” to guide the model. This technique effectively har-
monizes the boundary by synthesizing a contextually aware
transition, ensuring that the final image is photorealistic and
coherent. We utilize PixelHacker [30] for inpainting the
composed images, given its robust and exceptional perfor-
mance.
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Figure 4. Qualitative comparisons of our method with DragDiffusion [25] and DragGAN [22] on natural images.
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Figure 5. Qualitative comparisons of our method with DragDiffusion [25] on man-made objects. It is noteworthy that DragGAN [22] failed

to produce any results for these input images.

4. Result

4.1. Qualitative Comparison

We evaluated our proposed method against two state-of-
the-art interactive editing approaches: DragDiffusion and
DragGAN. These methods represent the current paradigm
of point-based image manipulation, where users specify
source and target positions to guide the editing process.
Our comparison specifically focuses on editing scenarios
that involve significant pose changes or viewpoint modifi-
cations. These transformations are particularly challenging
for purely 2D-based approaches due to their inherent pixel-
level manipulation, but they are naturally handled by our
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3D-aware framework.

Our experiments were conducted on both natural im-
ages and images of man-made objects. As shown in Fig.4,
for natural images of specific targets such as elephants and
horses, both DragDiffusion[25] and DragGAN [22] pro-
duce edited results, but these are not strictly aligned with
the given controls. For instance, the back legs and nose of
the elephant cannot be moved forward and backward, re-
spectively. DragDiffusion failed to rotate the horse’s face
toward the camera due to its in-plane nature. While Drag-
GAN successfully rotated the horse’s head, it produced un-
natural results on the horse’s face.

For images of more general man-made objects (Fig. 5),
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Figure 6. Diverse editing results produced by our method.

we observed that DragGAN failed to produce any results.
Meanwhile, DragDiffusion was unable to achieve large
rigid rotations of the target objects. Furthermore, DragDif-
fusion introduced semantic artifacts when handling signifi-
cant non-rigid deformations, such as on the Gundam legs.

In contrast, our method consistently performs large-scale
editing across a wide variety of images, producing high-
fidelity outputs that robustly preserve object identity and
scene consistency. This comprehensive evaluation demon-
strates that our approach significantly outperforms the com-
pared methods in challenging editing scenarios with flexi-
ble, non-rigid, accurate, and large-scale 3D control.

4.2. Diverse Editing Results

Our experiments extended to various other images, sub-
jected to diverse editing manipulations. The showcased re-
sults in Figure 6 confirm that our method not only supports
the large-scale edits users anticipate but also robustly pre-
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serves object identity. Qualitative evaluations highlight a
significant reduction in visual artifacts and superior struc-
tural coherence compared to existing 2D methods, validat-
ing our 2D-3D-2D approach’s efficacy.

5. Conclusion

Our work presents a real-time interactive 2D image edit-
ing method that performs manipulations on 2D instances in
3D space. This framework significantly outperforms prior
interactive approaches, e.g, DragGAN and DragDiffusion,
enabling large-scale edits across a wide range of images
while consistently preserving object identity. However, the
fidelity of our edits heavily depends on the quality of 3D re-
construction, which remains challenging for inputs with oc-
clusions, severe lighting conditions, or distant object place-
ment. Moreover, existing off-the-shelf inpainting methods
fail to consistently produce satisfactory results. Using the
composed images as a coarse draft, training a refinement
model to specifically post-process these images is left as
future work to achieve higher visual quality and better har-
mony between the instances and environments.
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