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A person sitting on a sofa … sitting in a bin … doing bench presses … sitting on
a gym bench

… hugging a dragon … riding a dragon … climbing stairs … sitting on stairs

Figure 7. Additional Results. DreamHOI is able to generate HOIs for diverse objects and corresponding prompts.

A. Additional Results
Additional qualitative results. Additional results on a
variety of prompts and objects can be found in Fig. 7.
DreamHOI is capable of realistically deforming the human
pose to interact with these objects faithfully to the corre-
sponding textual prompts.

Failure cases. We show some cases where DreamHOI
failed in Fig. 8. From a manual inspection, in most cases
this was due to the underlying diffusion model not under-
standing the semantic composition, because it was too com-
plex, vague, or exotic (respectively, in Fig. 8). In other cases
this was due to the pose prediction (SMPLify-X [34]) not
working properly. Therefore we believe an improvement to
either would improve DreamHOI’s ability to generate real-
istic HOIs.

Additional comparisons. In our baseline comparisons
(Sec. 4.4), we considered comparing to the case where
we generate a NeRF by DreamFusion using DeepFloyd IF
guidance, with Mobj inserted. We showed that, although
mostly related to the prompt, the outputs often had prob-
lems like not view-consistent or being too large. Further-
more, the output cannot preserve the identity of the hu-
man. We now compare against more recent methods MV-
Dream [42] and ProlificDreamer [56], in Fig. 9. We find
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Figure 8. Failure Cases. We visualize failed outputs from the
first-round NeRF optimization (i.e., fω0 ). Our pipeline is unlikely
to recover if the NeRF from the initial round fails to capture the
approximate spatial relationship between the human and the ob-
ject.

that MVDream guidance is able to produce very detailed
and view-consistent NeRFs, but fails to understand the ba-
sic compositional relations in the prompt (e.g., “sit”). This
suggests that models such as MVDream cannot encode rich
semantic relations, and provides motivation to use Deep-
Floyd IF as our base model for better textual understanding.
ProlificDreamer fails to generate any meaningful human,
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Figure 9. Additional Comparison. Following Fig. 4, we ad-
ditionally compare DreamHOI to MVDream [42] and Prolific-
Dreamer [56] baselines.

Figure 10. Visualization of SDS gradient. Left: rendered xHO

(Mε with MObj); Middle: gradient →xLSDS-HO; Right: norm of
the gradient.

suggesting its inability to interact with an inserted object
mesh.

We would like to compare with methods specifically for
human-object interaction generation, e.g. InterFusion [6]
and HOI-Diff [35]. Unfortunately, their evaluation code
and model are either unavailable or not yet open-source at
the time of writing. Qualitatively, we re-iterate that none
of the existing methods take a human identity as an input,
so they do not achieve subject-driven HOI synthesis even
if the output is realistic. InterFusion [6] offers no control
over either the human identity or the object (except through
the text prompt), while our method takes the human iden-
tity and Mobj as inputs, and they are preserved in the output.
Other HOI generation methods such as HOI-Diff [7, 35] are
trained on MoCap datasets such as BEHAVE [1], and can
only handle a fixed number of objects. On the other hand,
our method can perform zero-shot open-world generation
(e.g., riding a dragon, Fig. 7), thanks to priors given by
2D diffusion models. An overview of existing methods is
in Sec. 2.

B. Discussions
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Figure 11. Front Direction Control. MVDream [42] guidance
enables us to give an implicit “front” direction: the generated hu-
mans consistently face the ±x direction regardless of the orienta-
tion of the object.

Failure analysis of direct optimization. The most
straightforward way to solve the subject-driven HOI gen-
eration task we propose is to only use explicit SMPL (or
any other body model) pose parameters ω instead of an im-
plicit NeRF fω as the object for optimization. In this solu-
tion, we differentiably render the resulting SMPL mesh Mε

with an object mesh Mobj, and use SDS to directly optimize
ω. This avoids the problem of translation between explicit
and implicit forms and makes optimization much faster (e.g.
SMPL only has 69 pose parameters [27]).

However, in our extensive tests, this method does not
work at all. Even if we initialize from a near-optimal pose,
ω regresses to a nonsensical pose as in Fig. 4. Additional
changes like making vertex colors and global position learn-
able do not help either. This was observed in Sec. 4.4.

To illustrate the reason, we monitor the SDS loss and
gradient during the optimization of ω in Fig. 10, for the
prompt “a person sitting on a chair”. In the middle and
right panels, the guidance tries to add legs to the position
where legs would be expected, on the seat and to its front.
However, there is no way for this gradient to add legs to
be propagated to ω, because ω can only receive gradients on
pixels that the rendered Mε occupies. In other words, the
tendency of diffusion models to add and delete limbs glob-
ally, instead of gradually moving a limb, means that SDS is
not suitable for optimizing ω directly. This necessitates the
dual implicit-explicit optimization we propose.

MVDream front direction. We claimed in Sec. 4.5 that
MVDream takes camera positions as input and based on
bias in its training data, MVDream gives a prior of a “front”



direction (in +x direction) for generating the HOI. We
demonstrate this in Fig. 11. This gives us the ability to con-
trol the forward face of the entire HOI (typically the direc-
tion the person is facing, or its opposite) with respect to the
object by rotating the mesh MObj in the generation.

C. Technical Details
C.1. Regularizers
The sparsity above threshold regularizer RSA is defined as
follows: after rendering the human-only 2D image xH →
RH→W→4 where RGBA pixel colors are obtained by ren-
dering the implicit representation of a human as NeRF fω

as in Sec. 3.1, we compute its average density by x̄H =
1

HW

∑
H

i=1

∑
W

j=1(xH)i,j,4 where 4 means the alpha chan-
nel (computed from the sum of wi in Eq. (1)). This ap-
proximates the “size” of a human, as rendered from a par-
ticular view. To ensure robustness, we adjust the camera
distance based on its randomly sampled field of view, en-
suring that the 3D unit cube consistently occupies the same
area in the renderings regardless of the focal length. We
describe sampling the camera position and this adjustment
in Appendix C.2. We would like the size to not exceed a
certain threshold ε = 20% of the image, by minimizing the
regularizer

RSA := softplus(x̄H ↑ ε). (5)

The intersection regularizer RI computes the average
density ϑ (as predicted by fω) of all ray points µ inside the
object mesh MObj. Informally, it measures the volume of in-
tersection between the human NeRF and the object. RI dis-
courages the model from generating body parts or other ob-
jects inside MObj, which would be invisible in xHO. To com-
pute this, we first sample 1283 points P inside the bounding
box of MObj and use a mesh occupancy test to determine if
they are inside MObj. Let µiu be the ith point along the ray
cast from pixel u, as in Sec. 3.1. We determine that it is
inside MObj if its nearest point in P is in MObj. This avoids
using an expensive occupancy test for every point in each
training iteration. Let M be all points µiu, and we compute
the average density of the NeRF inside MObj as

RI :=
1

|M |
∑

µ↑M

ϑω(µ) {µ is inside Mobj}, (6)

where ϑω(µ) is the volume density at µ predicted by fω.

C.2. Optimization
We follow MVDream [42] and optimize the initial NeRF in
2 stages. In each stage, we optimize the NeRF with AdamW
optimizer (learning rate and weight decay are both set to
0.01) for 5000 steps. We render 64 ↓ 64 and 256 ↓ 256
images and use batch size 8 and 4 respectively in two
stages. After NeRF re-initialization, MVDream guidance

is no longer used, and we increase the rendering resolution
to 512 ↓ 512, reduce the batch size to 1, and decrease the
learning rate to 0.001.

The field of view f of the camera in each optimization
step is sampled uniformly at random within [15↓, 60↓], and
the camera distance to origin is set to D/ tan(f/2) where
the denominator is such that a unit volume in the 3D space
corresponds roughly to a fixed area in the 2D space, for RSA
to work properly as in Appendix C.1, and D ↔ [0.8, 1.0] is
a perturbation. The elevation angle is sampled uniformly
from [0↓, 30↓]. Although not done in this work, we recom-
mend lowering it to [↑30↓, 30↓] if parts of the human may
be below the object for better supervision. For rendering
views xi of the NeRF for pose estimation (Sec. 4.2), we use
an array of cameras with distance 3 to the origin, elevated
at 40↓.

The NeRF representing the human is constrained in a
ball of radius 1. We initialize it to be at the origin. The
number of parameters of the NeRF MLP (fω) is about 12.6
million.

The background color is learned, with a lower learn-
ing rate 0.001, and is replaced during training with a ran-
dom color with probability 0.5 (increased to 1 after re-
initialization) in training for augmentation.

The NeRF renderer uses one ray per 2D pixel and 512
samples per ray. We do not use shading for NeRF [37] as it
is costly to compute.

C.3. Guidance
For SDS, we use classifier-free guidance [13] with guid-
ance weight set to ϖ = 50. We include the negative prompt
“missing limbs, missing legs, missing arms” during opti-
mization.


