Motion-Refined DINOSAUR for Unsupervised Multi-Object Discovery

Supplementary Material

We first extend our approach to the synthetic multi-
object video dataset MOVI-E [78]. Next, we evaluate the
effectiveness of our quasi-static frames retrieval method
used for pseudo-label generation. Additionally, we pro-
vide qualitative insights into our work, including failure
cases, pseudo-label visualization, and MR-DINOSAUR re-
sults. We finish with details about the datasets employed,
as well as the implementation details, to facilitate repro-
ducibility.

A. MR-DINOSAUR on MOVI-E

We experiment on MOVI-E to broaden the range of datasets
and methods for comparison. Because none of those meth-
ods report F1 or all-ARI on MOVI-E, we restrict our eval-
uation to fg-ARI here. MOVi-E [78] introduces a constant,
artificial camera motion that violates our static-frame as-
sumption for pseudo-labeling. Despite this disadvantage,
our method achieves promising results in the ballpark of
methods that explicitly deal with camera motion in the train-
ing data as shown in Tab. 6.

B. Quasi-static Frame Retrieval Analysis

We evaluate the effectiveness of our quasi-static frame re-
trieval method on the KITTI dataset, which includes de-
tailed annotations of ground truth camera velocity for every
video frame. Given that our motion segmentation approach
used for pseudo-label generation relies on the static back-
ground assumption, the quasi-static frame retrieval plays an
important role in achieving high-quality pseudo labels. We
evaluate the quasi-static frame retrieval by comparing the
set of frames our method retrieves from the training data to
the ground-truth quasi-static frames. Ground-truth quasi-
static frames are defined as frames with camera velocities
below 0.2 m/s. Our method achieves an impressive 99.4 %
accuracy, 99.2 % precision, and 96.6 % recall as shown in
Tab. 7, confirming that thresholding the average flow mag-
nitude at the image corners is a simple and effective way to
retrieve quasi-static frames.

C. More Qualitative Results

We provide additional qualitative visualizations of our
pseudo-labels and our proposed method MR-DINOSAUR,
as well as failure cases.

C.1. Qualitative pseudo-label examples

Fig. 6 shows additional visualizations of our pseudo-labels
comparing to TSAM pseudo labels. Consistent with the

Table 6. Unsupervised multi-object discovery on MOVI-E us-
ing fg-ARIL * denotes using DINOv2. Underlined methods use
supervision.

Method fg-ARI
GWM [14] 42.5
SPOT [33] 59.9
PPMP [36] 63.1
DINOSAUR [56] 65.1
MoTok [5] 66.7
Safadoust et al. [54] 78.3
VideoSAUR [79] 78.4
SOLV* [3] 80.8
DIOD* [35] 82.2
DINOSAUR* [56] 66.2
MR-DINOSAUR* (Ours) 80.1

Table 7. Quasi-static frame retrieval analysis using accuracy,
precision, recall (all in %) on the KITTI dataset. We compare the
set of frames retrieved from the training videos by our method to
the set of frames with a ground-truth velocity smaller than 0.2 m/s.

Ground-truth Velocity
< 0.2m/s 99.4 99.2 96.6

Accuracy Precision Recall

analysis in Sec. 4.2, our pseudo-labels are precise and
of high quality for both synthetic TRI-PD and real-world
KITTI data. Although some samples exhibit motion ar-
tifacts introduced by the unsupervised optical flow from
SMUREF [60] (e.g., the left KITTI image), we mainly ob-
serve accurate object masks. Compared to TSAM pseudo
labels, our pseudo labels exhibit fewer artifacts.

C.2. Failure cases

We visualize representative failure cases for MR-
DINOSAUR in Fig. 7. Occasionally, predictions cover
non-object structures (e.g., a tree in the left image) and
over-segmentation occurs on large objects with intricate
textures (e.g., the truck in the right TRI-PD image).
Precise segmentation of small, overlapping objects also
remains challenging. Notably, similar issues—such as
artifacts and missed small objects—are observed with the
state-of-the-art DIOD [35] method.

C.3. Qualitative MR-DINOSAUR examples

Finally, Fig. 8 presents additional qualitative examples
comparing our method, MR-DINOSAUR, to the baseline
DINOSAUR [56] and DIOD [35]. While DINOSAUR es-
tablishes a solid foundation, it tends to undersegment and
blur the distinction between objects and background. DIOD
produces good qualitative results but often yields noisy
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Figure 6. Additional visualizations of our pseudo-labels on the TRI-PD [4] and KITTI [24] dataset. We further visualize the respective
TSAM pseudo labels used by DIOD [35]. Here we use random colors for different objects.
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Figure 7. Failure cases of MR-DINOSAUR (Ours) comparing to DIOD [35] and our baseline DINOSAUR [56] on the TRI-PD [4] and

KITTI [24] dataset. Here we use random colors for different objects.

masks by merging multiple objects into a single mask or
missing objects entirely. In contrast, MR-DINOSAUR ef-
fectively differentiates foreground from background, result-
ing in fewer false positives and demonstrating superior ca-
pability in detecting small instances.

D. Reproducibility

To facilitate reproducibility, we elaborate on the technical
and implementation details. Note that our code is available
athttps://github.com/visinf/mrdinosaur.

D.1. Datasets

TRI-PD [4] is a synthetic urban driving-scene dataset
extracted from Parallel Domain [77]. It includes detailed
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Figure 8. Qualitative comparison of our baseline DINOSAUR [56], DIOD [35], and MR-DINOSAUR (Ours) on the TRI-PD [4] datasets
and KITTI [24]. Here we use random colors for different object instances.

annotations, including camera pose, calibration, depth,
instance segmentation, semantic segmentation, 2D/3D
bounding box, depth, forward/backward 2D motion vec-
tors, and forward/backward 3D motion vectors. The train-
ing set consists of 200 photorealistic scenes captured by
six cameras, each with 200 frames; the validation set com-
prises 17 scenes recorded by three cameras, totaling 10200
frames. In this paper, we only use the three front-camera
frames that align with the validation set for training. Fol-
lowing previous work [4, 5, 34, 35], we discard scenar-
ios with low visibility (e.g., foggy and dark scenes), re-
sulting in 157 scenes and a total of 94200 frames, for
training DINOSAUR. From these, we extract 13 280 quasi-
static frames for training MR-DINOSAUR. The resolution
of all frames is 1216 x 1936. Following previous work
[4, 5, 34, 35], we resize and crop the images to a resolu-
tion of 980 x 490 for pseudo-labeling and training. Train-
ing is performed on two non-overlapping square crops of
size 490 x 490.

KITTI [24]is a widely used autonomous driving dataset.
It includes various sensor data collected from various en-
vironments, e.g., urban, rural, and highway scenes, offer-
ing extensive annotations and a diverse range of scenar-
ios. We train DINOSAUR using all images provided in
the raw data, resulting in 95778 frames from 151 videos.
We retrieve 12526 quasi-static frames for training MR-
DINOSAUR. For evaluation, we utilize the instance seg-
mentation subset, which consists of 200 frames with a res-

olution of 375 x 1242. Each frame is an individual image,
rather than part of a consecutive sequence. Also, follow-
ing previous work [4, 5, 34, 35], we resize the images to a
resolution of 378 x 1260 for pseudo-labeling and training.
Training is performed on four non-overlapping square crops
of size 378 x378.

MOVI  [78] is a synthetic video dataset comprising
six sub-datasets (MOVI-A to MOVI-F) of increasing
complexity. Each sub-dataset consists of generated scenes,
with each scene representing a two-second rigid-body
simulation of falling objects. The sub-datasets vary in
object count and type, background, camera trajectory, and
whether all objects are in motion or some remain stationary.
We experiment on the MOVi-E dataset used by several
previous works on multi-object discovery [3, 5, 35, 54, 79].
MOVi-E introduces simple camera movement, where the
camera moves along a straight line at a random but constant
velocity. Each video consists of 24 frames, with the training
set containing 9749 videos (a total of 233976 frames) and
the validation set containing 250 videos (a total of 6000
frames). We randomly selected 9 frames from each video
for training, resulting in a total of 87741 images used
for training DINOSAUR. We retrieve 84 831 quasi-static
frames for training MR-DINOSAUR. Images originally at
256 x 256 are resized to 266 x 266 for training to account
for the patch size of DINOvV2.



Table 8. DINOSAUR and MR-DINOSAUR hyperparameters used for the results on the TRI-PD, KITTI, and MOVI-E datasets.

DINOSAUR
Dataset TRI-PD KITTI MOYVi-E
Training steps 500k 500k 500k
Batch size 16 64 64
Optimizer Adam Adam Adam
Number of warmup steps 10k 10k 10k
Peak learning rate le-4 4e-4 4e-4
Exponential decay half-life 100k 100k 100k
ViT architecture DINOvV2-ViT-B/14 DINOvV2-ViT-B/14 DINOvV2-ViT-B/14
Image/Crop size 490 378 266
Cropping strategy Random Random Full

Augmentations Random Horizontal Flip Random Horizontal Flip -
Type MLP MLP MLP

Decoder Layers 4 4 4
MLP hidden dimension 2048 2048 1024

Number of slots 30 15 24

Slot Attention Total 'number of slots 60 60 24
Iterations 3 3 3

Slot dimension D ;445 32 32 128

MR-DINOSAUR

Quasi-static frame retrieval threshold Ty 0.5 1.7 1.7

Pseudo label generation Foreground mask threshold 7, 25 2.5 2.5
Flow-gradient threshold 7v 20 20 20

Training epochs 15 15 15

Training stage 1 Batch size 8 8 8
Learning rate 4e-06 4e-06 4e-06

Training epochs 1 1 1

Batch size 8 8 8

Training stage 2 Learning rate 4e-05 4e-05 4e-05
Regularization term « 0.2 0.2 0.2

Drop similarity Tqrop 0.99 0.99 0.99

L Layers 4 4 4

Slot deactivation module MLP hidden dimension 2048 2048 2048

D.2. Computational Requirements

All experiments use a single NVIDIA RTX 6000 Ada Gen-
eration GPU (48 GB VRAM) in a workstation equipped
with an AMD EPYC 7343 CPU (32 cores) and 512GB
RAM.

On TRI-PD, a full 500000-step training of the DI-
NOSAUR baseline takes approximately 267h, involving
97.3M parameters, of which 10.7M are trainable. For
MR-DINOSAUR, training stage 1 (15 epochs, batch size
8) takes approximately 11 h, utilizing the same 97.3 M pa-
rameters, of which 634 K are trainable. Training stage 2 (1
epoch, batch size 8) takes approximately 40 min and utilizes
105.8 M parameters with 8.5 M trainable. Peak memory us-
age reaches 40.2 GB. At inference, we process an image at
a resolution of 490 x 980 in 740 ms.

D.3. Further Implementation Details

Finally, we provide an overview of all hyperparameters used
for training the baseline DINOSAUR and our method MR-
DINOSAUR in Tab. 8.
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