
Motion-Refined DINOSAUR for Unsupervised Multi-Object Discovery

Supplementary Material

We first extend our approach to the synthetic multi-

object video dataset MOVI-E [78]. Next, we evaluate the

effectiveness of our quasi-static frames retrieval method

used for pseudo-label generation. Additionally, we pro-

vide qualitative insights into our work, including failure

cases, pseudo-label visualization, and MR-DINOSAUR re-

sults. We finish with details about the datasets employed,

as well as the implementation details, to facilitate repro-

ducibility.

A. MR-DINOSAUR on MOVI-E

We experiment on MOVI-E to broaden the range of datasets

and methods for comparison. Because none of those meth-

ods report F1 or all-ARI on MOVI-E, we restrict our eval-

uation to fg-ARI here. MOVi-E [78] introduces a constant,

artificial camera motion that violates our static-frame as-

sumption for pseudo-labeling. Despite this disadvantage,

our method achieves promising results in the ballpark of

methods that explicitly deal with camera motion in the train-

ing data as shown in Tab. 6.

B. Quasi-static Frame Retrieval Analysis

We evaluate the effectiveness of our quasi-static frame re-

trieval method on the KITTI dataset, which includes de-

tailed annotations of ground truth camera velocity for every

video frame. Given that our motion segmentation approach

used for pseudo-label generation relies on the static back-

ground assumption, the quasi-static frame retrieval plays an

important role in achieving high-quality pseudo labels. We

evaluate the quasi-static frame retrieval by comparing the

set of frames our method retrieves from the training data to

the ground-truth quasi-static frames. Ground-truth quasi-

static frames are defined as frames with camera velocities

below 0.2 m/s. Our method achieves an impressive 99.4 %

accuracy, 99.2 % precision, and 96.6 % recall as shown in

Tab. 7, confirming that thresholding the average flow mag-

nitude at the image corners is a simple and effective way to

retrieve quasi-static frames.

C. More Qualitative Results

We provide additional qualitative visualizations of our

pseudo-labels and our proposed method MR-DINOSAUR,

as well as failure cases.

C.1. Qualitative pseudo-label examples

Fig. 6 shows additional visualizations of our pseudo-labels

comparing to TSAM pseudo labels. Consistent with the

Table 6. Unsupervised multi-object discovery on MOVI-E us-

ing fg-ARI. * denotes using DINOv2. Underlined methods use

supervision.

Method fg-ARI

GWM [14] BMVC’22 42.5

SPOT [33] CVPR’24 59.9

PPMP [36] NeurIPS’22 63.1

DINOSAUR [56] ICLR’23 65.1

MoTok [5] CVPR’23 66.7

Safadoust et al. [54] ICCV’23 78.3

VideoSAUR [79] NeurIPS’23 78.4

SOLV∗ [3] NeurIPS’23 80.8

DIOD∗ [35] CVPR’24 82.2

DINOSAUR∗ [56] ICLR’23 66.2

MR-DINOSAUR∗ (Ours) 80.1

Table 7. Quasi-static frame retrieval analysis using accuracy,

precision, recall (all in %) on the KITTI dataset. We compare the

set of frames retrieved from the training videos by our method to

the set of frames with a ground-truth velocity smaller than 0.2 m/s.

Ground-truth Velocity Accuracy Precision Recall

< 0.2 m/s 99.4 99.2 96.6

analysis in Sec. 4.2, our pseudo-labels are precise and

of high quality for both synthetic TRI-PD and real-world

KITTI data. Although some samples exhibit motion ar-

tifacts introduced by the unsupervised optical flow from

SMURF [60] (e.g., the left KITTI image), we mainly ob-

serve accurate object masks. Compared to TSAM pseudo

labels, our pseudo labels exhibit fewer artifacts.

C.2. Failure cases

We visualize representative failure cases for MR-

DINOSAUR in Fig. 7. Occasionally, predictions cover

non-object structures (e.g., a tree in the left image) and

over-segmentation occurs on large objects with intricate

textures (e.g., the truck in the right TRI-PD image).

Precise segmentation of small, overlapping objects also

remains challenging. Notably, similar issues—such as

artifacts and missed small objects—are observed with the

state-of-the-art DIOD [35] method.

C.3. Qualitative MR-DINOSAUR examples

Finally, Fig. 8 presents additional qualitative examples

comparing our method, MR-DINOSAUR, to the baseline

DINOSAUR [56] and DIOD [35]. While DINOSAUR es-

tablishes a solid foundation, it tends to undersegment and

blur the distinction between objects and background. DIOD

produces good qualitative results but often yields noisy
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TRI-PD KITTI

Figure 6. Additional visualizations of our pseudo-labels on the TRI-PD [4] and KITTI [24] dataset. We further visualize the respective

TSAM pseudo labels used by DIOD [35]. Here we use random colors for different objects.
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Figure 7. Failure cases of MR-DINOSAUR (Ours) comparing to DIOD [35] and our baseline DINOSAUR [56] on the TRI-PD [4] and

KITTI [24] dataset. Here we use random colors for different objects.

masks by merging multiple objects into a single mask or

missing objects entirely. In contrast, MR-DINOSAUR ef-

fectively differentiates foreground from background, result-

ing in fewer false positives and demonstrating superior ca-

pability in detecting small instances.

D. Reproducibility

To facilitate reproducibility, we elaborate on the technical

and implementation details. Note that our code is available

at https://github.com/visinf/mrdinosaur.

D.1. Datasets

TRI-PD [4] is a synthetic urban driving-scene dataset

extracted from Parallel Domain [77]. It includes detailed

https://github.com/visinf/mrdinosaur
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Figure 8. Qualitative comparison of our baseline DINOSAUR [56], DIOD [35], and MR-DINOSAUR (Ours) on the TRI-PD [4] datasets

and KITTI [24]. Here we use random colors for different object instances.

annotations, including camera pose, calibration, depth,

instance segmentation, semantic segmentation, 2D/3D

bounding box, depth, forward/backward 2D motion vec-

tors, and forward/backward 3D motion vectors. The train-

ing set consists of 200 photorealistic scenes captured by

six cameras, each with 200 frames; the validation set com-

prises 17 scenes recorded by three cameras, totaling 10 200

frames. In this paper, we only use the three front-camera

frames that align with the validation set for training. Fol-

lowing previous work [4, 5, 34, 35], we discard scenar-

ios with low visibility (e.g., foggy and dark scenes), re-

sulting in 157 scenes and a total of 94 200 frames, for

training DINOSAUR. From these, we extract 13 280 quasi-

static frames for training MR-DINOSAUR. The resolution

of all frames is 1216× 1936. Following previous work

[4, 5, 34, 35], we resize and crop the images to a resolu-

tion of 980× 490 for pseudo-labeling and training. Train-

ing is performed on two non-overlapping square crops of

size 490× 490.

KITTI [24] is a widely used autonomous driving dataset.

It includes various sensor data collected from various en-

vironments, e.g., urban, rural, and highway scenes, offer-

ing extensive annotations and a diverse range of scenar-

ios. We train DINOSAUR using all images provided in

the raw data, resulting in 95 778 frames from 151 videos.

We retrieve 12 526 quasi-static frames for training MR-

DINOSAUR. For evaluation, we utilize the instance seg-

mentation subset, which consists of 200 frames with a res-

olution of 375× 1242. Each frame is an individual image,

rather than part of a consecutive sequence. Also, follow-

ing previous work [4, 5, 34, 35], we resize the images to a

resolution of 378× 1260 for pseudo-labeling and training.

Training is performed on four non-overlapping square crops

of size 378×378.

MOVI [78] is a synthetic video dataset comprising

six sub-datasets (MOVI-A to MOVI-F) of increasing

complexity. Each sub-dataset consists of generated scenes,

with each scene representing a two-second rigid-body

simulation of falling objects. The sub-datasets vary in

object count and type, background, camera trajectory, and

whether all objects are in motion or some remain stationary.

We experiment on the MOVi-E dataset used by several

previous works on multi-object discovery [3, 5, 35, 54, 79].

MOVi-E introduces simple camera movement, where the

camera moves along a straight line at a random but constant

velocity. Each video consists of 24 frames, with the training

set containing 9749 videos (a total of 233 976 frames) and

the validation set containing 250 videos (a total of 6000

frames). We randomly selected 9 frames from each video

for training, resulting in a total of 87 741 images used

for training DINOSAUR. We retrieve 84 831 quasi-static

frames for training MR-DINOSAUR. Images originally at

256× 256 are resized to 266× 266 for training to account

for the patch size of DINOv2.



Table 8. DINOSAUR and MR-DINOSAUR hyperparameters used for the results on the TRI-PD, KITTI, and MOVI-E datasets.

DINOSAUR

Dataset TRI-PD KITTI MOVi-E

Training steps 500k 500k 500k

Batch size 16 64 64

Optimizer Adam Adam Adam

Number of warmup steps 10k 10k 10k

Peak learning rate 1e-4 4e-4 4e-4

Exponential decay half-life 100k 100k 100k

ViT architecture DINOv2-ViT-B/14 DINOv2-ViT-B/14 DINOv2-ViT-B/14

Image/Crop size 490 378 266

Cropping strategy Random Random Full

Augmentations Random Horizontal Flip Random Horizontal Flip -

Decoder

Type MLP MLP MLP

Layers 4 4 4

MLP hidden dimension 2048 2048 1024

Slot Attention

Number of slots 30 15 24

Total number of slots 60 60 24

Iterations 3 3 3

Slot dimension Dslots 32 32 128

MR-DINOSAUR

Pseudo label generation

Quasi-static frame retrieval threshold τstatic 0.5 1.7 1.7

Foreground mask threshold τfg 2.5 2.5 2.5

Flow-gradient threshold τ→ 20 20 20

Training stage 1

Training epochs 15 15 15

Batch size 8 8 8

Learning rate 4e-06 4e-06 4e-06

Training stage 2

Training epochs 1 1 1

Batch size 8 8 8

Learning rate 4e-05 4e-05 4e-05

Regularization term α 0.2 0.2 0.2

Drop similarity τdrop 0.99 0.99 0.99

Slot deactivation module
Layers 4 4 4

MLP hidden dimension 2048 2048 2048

D.2. Computational Requirements

All experiments use a single NVIDIA RTX 6000 Ada Gen-

eration GPU (48 GB VRAM) in a workstation equipped

with an AMD EPYC 7343 CPU (32 cores) and 512 GB

RAM.

On TRI-PD, a full 500 000-step training of the DI-

NOSAUR baseline takes approximately 267 h, involving

97.3 M parameters, of which 10.7 M are trainable. For

MR-DINOSAUR, training stage 1 (15 epochs, batch size

8) takes approximately 11 h, utilizing the same 97.3 M pa-

rameters, of which 634 K are trainable. Training stage 2 (1

epoch, batch size 8) takes approximately 40 min and utilizes

105.8 M parameters with 8.5 M trainable. Peak memory us-

age reaches 40.2 GB. At inference, we process an image at

a resolution of 490× 980 in 740 ms.

D.3. Further Implementation Details

Finally, we provide an overview of all hyperparameters used

for training the baseline DINOSAUR and our method MR-

DINOSAUR in Tab. 8.
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