Benchmarking Feature Upsampling Methods for Vision Foundation Models using
Interactive Segmentation

Supplementary Material

A. Further Architectural Explorations

A.1. Segmentation Head Ablation Studies

To determine the optimal segmentation head, three configu-
rations were evaluated, aiming to maintain simplicity while
ensuring sufficient expressiveness.

* Linear Head — A single 1 x 1 convolutional layer.

 Simple Conv Head — Three 1 x 1 convolutional layers with
an inner channel dimension of 384.

* Conv Head — Similar to the Simple Conv Head, but with
the first two layers using a kernel size of 3 x 3 instead of
1x1.

Tab. 2 presents a comparison of these architectures using
ViT [1] backbone without feature upsampling, a symmetric
patch embedding click encoder, and early click injection. The
Conv Head achieves the best balance between performance
and complexity and is therefore selected for all subsequent
experiments.

GrabCut
Head
NoC80 NoC85 NoC90 IoU@1
Linear 6.06 9.02 14.06 36.33
Simple Conv | 4.76 7.94 1320 48.56
Conv 440 6.14 9.80 56.03

Table 2. Comparison of segmentation heads. Models were trained
on the SBD dataset for 20 epochs with a batch size of 16, using ViT
[1] backbone, a symmetric patch embedding click encoder with
early injection, and no upsampler.

A.2. Alternative Design Explorations

In this work, we explored two alternative architectures for
benchmarking VFMs that did not yield the desired perfor-
mance. Below, we describe these approaches in more detail

and discuss potential reasons for their limitations, which may
inform future improvements.

Multiscale Architecture. SOTA IS models [7, 11] typically
leverage multiscale features, which are extracted from vision
backbone outputs via FPN and subsequently processed by a
multiscale segmentation head. While our primary architec-
ture focused on removing all multiscale components, here
we investigate whether upsamplers can be beneficially used
in FPNs.

The architecture of our Upsampler-based FPN follows a
design similar to the FPN in ViTDet [6], which constructs
multiscale feature maps exclusively from the final feature
map of the vision backbone. Specifically, the DINOv2 (S/14)
[8] backbone produces a final feature map at a ﬁ resolu-
tion, from which we generate feature maps at resolutions
1, 411, i 28 The highest resolutions (1 and 4) are obtained
via upsampling, followed by a single convolutional layer.
The 114 resolution i 1s derived directly through a convolutional
layer, while the 55 resolution is obtained by applying a
2 X 2 max poohng operation prior to convolution. All con-
volutional layers employ 1 x 1 kernels, followed by nor-
malization layers, primarily to adjust the channel dimen-
sions of each feature map. The final multiscale feature maps
have channel dimensions of {C, 2C, 4C, 8C'} for resolutions
{1,1, 4, 5% }. respectively, where C' = 128.

As a baseline, we also adapted the FPN from SimpleClick
[7], which maps the feature map at 7 resolutlon to scales

?, %, i 28} The resolutions 2 - and - are generated using
two and one transposed convolutlonal layers, respectively.
The smallest resolution, - 55» 1s obtained by applying a con-
volutional layer with a 2 x 2 kernel and a stride of 2. The
feature map at the original resolution remains unchanged.
At the final stage, all scales are processed by convolutional
layers with a 1 x 1 kernel, followed by normalization layers.
The output channel dimensions are consistent with those
used in the Upsampler-based FPN.

FPN GrabCut Berkeley DAVIS
NoC80 NoC85 NoC90 IoU@1 NoC80 NoC85 NoC90 IoU@1 NoC80 NoC85 NoC90 IoU@1
SimpleClick FPN 38 552 974 67.00 518 858 13.61 60.83 1081 1425 1751 5450

Upsampler-based (Bilinear) | 4.84 7.02
Upsampler-based (LoftUp*) | 4.14 5.44

11.16 6142 629 10.11 15.81 5560 11.80 15.08 17.88 53.63
10.16 63.01 526 885 13.64 5939 1040 1386 17.20 60.49

Table 1. Evaluation of the multiscale IS architecture. The backbone used is DINOv2 (S/14) [8], with a symmetric patch embedding
click encoder and early injection. The segmentation head is an adapted version of SegFormer’s head [10]. * Indicates results obtained from
non-final checkpoints.

For the multiscale segmentation head, we adopt the archi-
tecture from Segformer [10]. Feature maps at four different
scales are processed through independent convolutional lay-
ers with a 1 x 1 kernel and an output channel dimension of
256. The features are then bilinearly interpolated to match
the resolution of the largest feature map (either 1 or % in
our setup), concatenated along the channel dimension, and
passed through an additional convolutional layer with the
same output channels and a 1 x 1 kernel. Finally, a classifi-
cation layer is applied. Normalization layers are included as
intermediate steps in the process.

We conducted experiments using DINOv2 (S/14) [8] with
a symmetric patch embedding click encoder and early in-
jection. Models were trained on the SBD dataset [3] for 20
epochs with the batch size of 8. Similar to other experiments,
VFM and upsampler modules are kept frozen. The results,
shown in Tab. 1, indicate that the Upsampler-based FPN,
when combined with LoftUp [5], outperforms the one with
bilinear interpolation. However, its advantage over the origi-
nal FPN baseline remains inconclusive. Furthermore, our pri-
mary single-scale architecture consistently outperforms the
multiscale approach. We hypothesize that this performance
gap stems from the fixed, predefined channel dimensions
used in the multiscale setup to maintain computational effi-
ciency, which may cause information loss in the upsampled
features. One potential solution would be to retain all chan-
nels from the upsampled features, which we leave for future
exploration. Another likely reason for the poor performance
is that the multiscale structure becomes redundant, as the
upsampler module already performs scaling effectively.

Multi-granular Architecture. A common challenge in IS is
the ambiguity in determining the desired object scale based
on a given input click, as the click may correspond to objects
of varying granularities. Recently, GraCo [11] addressed
this issue by introducing a granularity scale as an additional
input parameter. The granularity scale, a continuous value
between 0 and 1, specifies the intended object scale. To in-
corporate this concept, the authors extended the pre-trained
SimpleClick model [7] by injecting learnable granularity
embeddings into the segmentation pipeline. To enhance gran-
ularity control learning, LoRA fine-tuning [4] was applied.
To construct our multi-granular IS architecture, we
closely follow the methodology introduced in GraCo [11].
Our approach builds upon our primary single-scale pipeline,
which comprises VFM, click encoder, upsampler, and seg-
mentation head. The click encoder and segmentation head
are initialized using the results from previous experiments
and, along with VFM and upsampler, remain frozen dur-
ing training. Both the fixed granularity embeddings and the
LoRA parameters are introduced as learnable components.
The granularity embeddings are incorporated into the net-
work by adding them element-wise to both image and click
features, following either an early or late injection strategy.

Simultaneously, LoRA fine-tuning is applied to Q and K pro-
jection layers in each attention block of the VFM, enabling
efficient adaptation to multi-granular setup.

Tab. 3 presents the results for DINOv2 (S/14) using a sym-
metric patch embedding click encoder with early injection.
The models were trained using the extended, multi-granular
version of SBD dataset [3] for 20 epochs with the batch
size of 16. The dataset generation, training, and evaluation
protocols strictly follow those established by GraCo.

GrabCut
Upsampler
NoC80 NoC85 NoC90 IoU@1
Low-res 528 692 10.80 59.39
FeatUp [2] 3.68 5.02 8.02 69.61
Low-res + GRA 1220 1538 18.88 27.64
FeatUp [2] + GRA| 9.78 11.28 13.92 1230

Table 3. Evaluation of the multi-granular IS architecture. The
backbone used is DINOv2 (S/14) [8], with a symmetric patch
embedding click encoder and early injection.

Here, we observe that the multi-granular setup performs
considerably worse than the primary single-scale pipeline.
We attribute the reduced performance to potential shifts
in the backbone feature distribution caused by LoRA fine-
tuning, which may alter the upsampler’s input features. Ad-
dressing this limitation would require joint fine-tuning of the
backbone and the upsampler, a strategy not explored in this
work.

B. Additional Visualizations

We provide further visualizations of features after upsam-
pling in Fig. 1, as well as segmentation masks after the first
and third clicks in Figs. 2 and 3, respectively. All visualiza-
tions are generated on GrabCut dataset [9] using the DINOv2
(S/14) [8] backbone and a symmetric patch embedding click
encoder with early injection.

References

[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostata Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021. |

[2] Stephanie Fu, Mark Hamilton, Laura E. Brandt, Axel Feld-
mann, Zhoutong Zhang, and William T. Freeman. Featup: A
model-agnostic framework for features at any resolution. In
ICLR. OpenReview.net, 2024. 2

[3] Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdeyv,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In /CCV, pages 991-998. IEEE Computer
Society, 2011. 2

Low Res Bilinea

BU
‘
!)

]
J

Figure 1. Additional visualizations of upsampler features with a single input click. The click is indicated by a green dot on the original
images.

Bilinear

loU: 65.6

loU: 39.4

loU: 27.2

loU: 13.2

loU: 99.2

a»

loU: 25.5 loU: 76.7

loU: 50.4

loU: 42.7 loU: 90.6

(4]

(5]

(6]

(7]

(8]

loU: 72.8 loU: 64.9

loU: 42.5

loU: 75.9

loU: 65.1

Figure 2. Additional segmentation results with a single input click. The click is indicated by a green dot.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In /CLR.
OpenReview.net, 2022. 2

Haiwen Huang, Anpei Chen, Volodymyr Havrylov, Andreas
Geiger, and Dan Zhang. Loftup: Learning a coordinate-based
feature upsampler for vision foundation models, 2025. 2
Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming
He. Exploring plain vision transformer backbones for object
detection. In ECCV (9), pages 280-296. Springer, 2022. 1
Qin Liu, Zhenlin Xu, Gedas Bertasius, and Marc Niethammer.
Simpleclick: Interactive image segmentation with simple vi-
sion transformers. In ICCV, pages 22233-22243. IEEE, 2023.
1,2

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Ass-
ran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-

(9]

(10]

(11]

Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat,
Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien
Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision.
Trans. Mach. Learn. Res., 2024, 2024. 1,2

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“grabcut”: interactive foreground extraction using iterated
graph cuts. ACM Trans. Graph., 23(3):309-314, 2004. 2
Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
José M. Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
In NeurIPS, pages 12077-12090, 2021. 1, 2

Yian Zhao, Kehan Li, Zesen Cheng, Pengchong Qiao, Xi-
awu Zheng, Rongrong Ji, Chang Liu, Li Yuan, and Jie Chen.
Graco: Granularity-controllable interactive segmentation. In
CVPR, pages 3501-3510. IEEE, 2024. 1,2

GT Mask Low Res Bilinear LiFT FeatUp LoftUp

loU: 94.2 loU: 89.5 loU: 64.8 loU: 93.6 loU: 96.8

@
o
®

loU: 69.5 loU: 73.2 loU: 12.8 loU: 68.4 loU: 82.1

loU: 81.1 loU: 75.5 loU: 62.2 loU: 76.3 loU: 89.8

,/

loU: 76.9 loU: 74.7 loU: 59.2 loU: 72.1 loU: 85.1

Figure 3. Additional segmentation results with three input clicks. Positive and negative clicks are indicated by green and red dots,
respectively.

