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Supplementary Material

1. Datasets

Something-Something V2 (SSv2) [3] is a curated video
dataset for human action classification, comprising 174
classes and a total of 220,847 videos. Each video depicts a
single action with a duration ranging from 2 to 6 seconds.
SSv2 is a motion-focused dataset, where temporal relation-
ships are more pronounced compared to other datasets.
Kinetics-400 (K400) [4] is a widely used large-scale video
dataset, comprising 400 classes and over 250,000 videos.
Each video, approximately 10 seconds in duration, captures
a single action.

HMDBS51 [5] comprises 51 classes and a total of 6,766
videos. HMDBS51 emphasizes appearance information over
motion dynamics.

UCF101 [6] comprises 13,320 video clips categorized into
101 classes. These classes span five activity types: body
motion, human-to-human interaction, human-to-object inter-
action, musical instrument performance, and sports.

2. Additional Implementation Details

2.1. Data Preprocessing

Our data processing pipeline closely follows AdaMAE [1]
for pre-training. We extract 16 frames of dimension 224 x
224 from the videos, using a temporal stride of 4 (K400)
and 2 (HMDBS51/UCF101/SSv2), with the starting frame
randomly selected [2]. During pre-training, we apply data
augmentation techniques, including random resized cropping

Table 1. Hyperparameter setting for pre-training across all bench-
mark datasets.

Configuration Value
Learning rate for gy - Ip 1.5e-6
Epochs to train fy only - m, 10
Steps to train f4 and record gy episodes - k 1
Softmax Temperature 1
Policy loss coefficient - ¢1 le-4
Value loss coefficient - c2 le-4
Entropy coefficient - c3 le-4
Optimizer AdamW
Optimizer betas 0.9, 0.95
Batch size 32
Base learning rate 1.5e-4
Learning rate schedule cosine decay
Warmup epochs 40
Augmentation MultiScaleCrop

Table 2. Hyperparameter (1, k) tuning for pre-training, evaluated
based on reconstruction error on UCF101 and HMDB51. Same
configuration is adopted for SSv2 and K400 as in UCF101. Best
configuration is shown in gray .

(mo, k) | UCF101 HMDBS51
0, 1) 0.5211 0.8051
(1,1) 0.5205 0.8195
5, 1) 0.5304 0.8535
(10, 1) 0.5135 0.8278
(25, 1) 0.5269 0.8987
(100, 1) | 0.6662 0.9291
(50, 5) 0.7735 0.9772
(50, 10) | 0.8149 0.9776
(50,25) | 0.9201 -

in the spatial domain, random scaling within the range €
[0.5, 1], and random horizontal flipping [2].

2.2. Hyper-parameter Setting

Pre-training. The hyperparameter configurations used dur-
ing the pre-training phase across all benchmark datasets are
presented in Table 1. For (m,, k), hyperparameter tuning is
conducted on the UCF101 and HMDBS51 datasets (Table 2),
and the configuration that minimizes the reconstruction error
is selected. Similarly we also perform hyperparameter tuning
for coefficients (cy,c2,c3) in Table 3 during pretraining on
UCF101 and observe that (1e-4, 1e-4, 1e-4) minimizes the
reconstruction error. Empirical observations indicate that the
optimal configuration for UCF101 also performs effectively
on subset of K400 and SSv2 (small scale pre-training setup).
It is to be noted that we use reconstruction loss for tuning
these hyper-parameters because behaviour of reconstruction
loss during pretraining is more interpretable in terms of con-
vergence than the sampling loss.

Fine-tuning. The hyperparameter setting for end-to-end
fine-tuning on the downstream task of action recognition
across all benchmarks is summarized in Table 4.

2.3. Encoder-Decoder Architecture

We adopt an asymmetric encoder-decoder architecture [1]
for self-supervised pre-training and augment it with TATS
module and only keep the encoder during the fine-tuning.
In particular, the design of the encoder-decoder is based on
16-frame vanilla ViT-Base architecure. Table 5 provides an
overview of the encoder-decoder architecture utilized in our
framework.



Table 3. Hyperparameter (c1, c2, c3) tuning for pre-training, evalu-
ated based on reconstruction error on UCF101. Same configuration
is adopted for SSv2, K400 and HMDB51. (m,, k) are fixed as
(10,1). Best configuration is shown in gray .

(c1, c2, c3) UCF101
(le-4, 1e-3, 1e-3) | 0.5188
(le-4, 1e-3, le-4) | 0.5167
(le-4, 1e-4, 1e-3) | 0.5246
(1e-3, le-4, 1e-4) | 0.8482
(le-4, le-4, 1e-4) 0.5135
(le-5, 1e-4, 1e-4) | 0.5239
(1e-3,1e-3,1e-4) 0.5215
(le-3, 1e-3, le-4) 0.7869
(1e-5, 1e-5, 1e-5) | 0.5173

Table 4. Hyperparameter setting for end-to-end fine-tuning for all
benchmark datasets.

Configuration Value
Optimizer AdamW
Optimizer Betas {0.9, 0.999}
Batch size 8
Weight Decay Se-2
Base Learning Rate le-3
Learning Rate Schedule cosine decay
Layer-wise learning rate decay 0.75
‘Warmup epochs 5
RandAug 9,0.5
Label Smoothing 0.1
Mixup 0.8
CutMix 1.0
DropPath 0.1

# Temporal Clips 5 (k400), 2 (ssv2/hmdb/ucf)
# Spatial Crops 3

3. Linear Probing Evaluation.

Table 6 presents the top-1 and top-5 accuracy obtained
after linear probing evaluation of our method across
different mask ratios, p = {0.85,0.90,0.95} under
the small scale setting. Our method outperforms both
AdaMAE [1] and VideoMAE [7] on UCF101, HMDBS5]1,
and SSv2 datasets. For Kinetics-400, the performance of our
model exceeds that of AdaMAE [1], while being marginally
less than VideoMAE [7]. The potential cause for this obser-
vation can be associated to reduced number of pretraining
epochs under the small scale setting.

4. Large Scale Pre-training Results

We conduct pre-training (800 epochs) and finetuning (100
epochs) of our model on full SSv2 [3] dataset for p = 0.95
on 8 Nvidia A100 GPUs. In order to ensure fairness in
comparison, we also pre-train (800 epochs) and finetune (100

Table 5. Encoder-Decoder architecture based on AdaMAE [1].
TATS : Trajectory Aware Adaptive Token Sampler. MHA : Multi-
Head Self-Attention

Stage ViT-Base Output shape

stride 4 x 1 x 1 for K400 3% 16 x 224 % 224

Input Video stride 2 x 1 x 1 for ssv2/ucf/hmdb

stride 2 X 16 x 16
emb. dim 768
kernel size 2 X 16 X 16

Tokenization 1568 x 768

TATS Masking

Masking mask ratio p [(1—p) x 1568] x 768

Encoder [MHA(768)] x 12 [(1—p) x 1568] x 768

Projection MHA(384) 1568 x 384
concat masked tokens

Decoder [MHA(384)] x 4 [(1—p) x 1568] x 384

Projector MLP(1536) 1568 x 1536

Reshaping from 1536 to 3 X 2 X 16 x 16 3 X 16 x 224 x 224

Table 6. Comparison of Linear Probing result of Our model
against baselines ([, 7]) (T') on action recognition task across
benchmark datasets and different p with top-1/top-5 accuracy as
evaluation metric. (¢+)/ () : denotes increase/decrease in perfor-
mance)

Dataset Mask Ratio | VideoMAET [7] | AdaMAET [1] Ours
p top-1 top-5 top-1  top-5 top-1 top-5
0.85 4691 7571 | 4372 7142 | 4854, 7680 )
UCF101 0.90 4738 7635 | 4592 73.15 | 4928 ¢+, 7773 )
0.95 41.81  70.85 | 46.19 7431 | 49.05¢, 7722
0.85 2057 5052 | 21.42 5228 | 2253+, 5391 )
HMDB51 0.90 19.99 5072 | 22.66 54.17 | 22.79 ¢, 54.10 )
0.95 17.64 4837 | 21.81 51.56 | 23.50 v, 5228 1)
0.85 1286  31.33 | 10.51 2649 | 11.61 ), 28.64,
Kinetics-400 0.90 1427 3364 | 1135 27.46 | 1268, 3028,
0.95 1475 3450 | 1336 3090 | 13.66 ., 31.720)
0.85 08.96 2343 | 0991 2547 | 1029+, 26.04 )
SSv2 0.90 1027 2585 | 11.06 27.19 | 11.86+, 28.70)
0.95 11.18  27.68 | 12.75 30.66 | 1339+, 31.88 )

epochs) both baselines VideoMAE [7] and AdaMAE [1] on
full SSv2 for p = 0.95 with the same GPU setup using their
public source code and default configuration' .

Table 7 presents the top-1 and top-5 accuracy obtained in
this experiment. We observe that our approach outperforms
both the baselines under aggressive masking setting even
for large scale experiments for both 400 and 800 pretraining
epochs. This highlights the effectiveness and generalization
capability of the proposed TATS module and the training
strategy in terms of learning a better feature quality than
learnt by [1, 7].

Due to the availability of limited computational resources,
our experiments in this setup is limited.

Note : The baseline results for large-scale experiments
(VideoMAE [7], AdaMAE [1]) are slightly lower than those

! GPU setup for reproducing baselines is same as ours. Denoted by T



Table 7. Large Scale Pre-training and Finetuning Results.
Comparison of fine-tuning result of Our model against base-
lines ([1, 7]) (') on action recognition task for full SSv2 and
p = 0.95 with top-1/top-5 accuracy as evaluation metric. (/) :
denotes increase/decrease in performance)

Method Pretrain Epochs  top-1 top-5
VideoMAET [7]p=05% 400 65.48 89.33
AdaMAE [1],-95% 400 65.52 88.67
Ours,—g59% 400 65.98 +) 89.161)
VideoMAE! [7]p=05% 800 65.92 89.07
AdaMAE' [1Tp=05% 800 66.26 88.62
Ours,—95% 800 66.55 +) 88.84u,)

reported in their original publications. We attribute this
discrepancy to differences in the GPU pretraining setup. Our
experiments use a single node with 8 A100 GPUs, whereas
the original works used 8 nodes with 8 A100 GPUs each.
All results were reproduced using the publicly available code
from the original publication.

5. Limitations and Future Work.

Our proposed TATS and training recipe further need to be em-
pirically validated on large scale experimental settings, other
downstream tasks and extended to other modalities. Further-
more, with the recent resurgence in RL research due to its
applications in LLMs, it is important to reconsider strategies
that integrate dynamic computation into masked modeling
approaches, optimizing them through RL algorithms. We
plan to conduct future studies around these topics. We hope
this work can motivate further research in this direction.

6. Mask Visualization

Here we show visualizations of adaptive sampling learned
by our TATS module across benchmark dataset for different
mask ratios p = {0.95,0.9,0.85} in Figure 1, 2, 3, 4, 5, 6,
7,8,9,10, 11, 12.

In all of these Figures, first row represents input video
frames, the second row depicts the prediction/reconstruction,
the third row shows the reconstruction error, the fourth row
represents the probability of sampling the space-time patch,
fifth row shows the adaptive masks learned by TATS. The
last row depicts the binary masks learned by AdaMAE [1]
for comparison.

Mask  Probability ~ Error Prediction ~ Input

AdaMAE

Figure 1. Sample Visualization of a Kinetics 400 video with adap-
tive sampling using 7ATS with mask ratio p = 0.95. Compared
with AdaMAE [ 1] masks.
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Figure 2. Sample Visualization of a Kinetics 400 video with adap-
tive sampling using 7ATS with mask ratio p = 0.9. Compared with
AdaMAE [1] masks.
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Figure 3. Sample Visualization of a Kinetics 400 video with adap-
tive sampling using TATS with mask ratio p = 0.85. Compared
with AdaMAE [1] masks.
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Figure 4. Sample Visualization of a SSv2 video with adaptive
sampling using TATS with mask ratio p = 0.95. Compared with
AdaMAE [1] masks.
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Figure 5. Sample Visualization of a SSv2 video with adaptive
sampling using 7ATS with mask ratio p = 0.9. Compared with
AdaMAE [1] masks.
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Figure 6. Sample Visualization of a SSv2 video with adaptive
sampling using TATS with mask ratio p = 0.85. Compared with
AdaMAE [1] masks.
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Figure 7. Sample Visualization of a UCF101 video with adaptive
sampling using TATS with mask ratio p = 0.95. Compared with
AdaMAE [1] masks.
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Figure 8. Sample Visualization of a UCF101 video with adaptive
sampling using TATS with mask ratio p = 0.9. Compared with
AdaMAE [1] masks.
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Figure 9. Sample Visualization of a UCF101 video with adaptive
sampling using TATS with mask ratio p = 0.85. Compared with
AdaMAE [1] masks.
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Figure 10. Sample Visualization of a HMDBS51 video with adaptive
sampling using TATS with mask ratio p = 0.95. Compared with
AdaMAE [1] masks.
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Figure 11. Sample Visualization of a HMDBS51 video with adaptive
sampling using 7ATS with mask ratio p = 0.9. Compared with
AdaMAE [1] masks.
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Figure 12. Sample Visualization of a HMDBS51 video with adaptive
sampling using TATS with mask ratio p = 0.85. Compared with
AdaMAE [1] masks.



References

(1]

(2]

(3]

(4]

(3]

(6]

(71

Wele Gedara Chaminda Bandara, Naman Patel, Ali Gholami,
Mehdi Nikkhah, Motilal Agrawal, and Vishal M Patel. Adamae:
Adaptive masking for efficient spatiotemporal learning with
masked autoencoders. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14507-14517,2023. 1, 2,3,4,5

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al.
Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946-35958,
2022. 1

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,
Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin
Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The” something something” video database for learning
and evaluating visual common sense. In Proceedings of the
IEEE international conference on computer vision, pages 5842—
5850, 2017. 1,2

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe
Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green,
Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017. 1
Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote, Tomaso
Poggio, and Thomas Serre. Hmdb: a large video database for
human motion recognition. In 2011 International conference
on computer vision, pages 2556-2563. IEEE, 2011. 1
Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Video-
MAE: Masked autoencoders are data-efficient learners for self-
supervised video pre-training. In Advances in Neural Informa-
tion Processing Systems, 2022. 2, 3



	Datasets
	Additional Implementation Details
	Data Preprocessing
	Hyper-parameter Setting
	Encoder-Decoder Architecture

	Linear Probing Evaluation.
	Large Scale Pre-training Results
	Limitations and Future Work.
	Mask Visualization

