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Abstract

Aesthetic-driven image cropping is crucial for applications
like view recommendation and thumbnail generation, where
visual appeal significantly impacts user engagement. A key
factor in visual appeal is composition—the deliberate ar-
rangement of elements within an image. Some methods
have successfully incorporated compositional knowledge
through evaluation-based and regression-based paradigms.
However, evaluation-based methods lack globality while
regression-based methods lack diversity. Recently, hybrid
approaches that integrate both paradigms have emerged,
bridging the gap between these two to achieve better di-
versity and globality. Notably, existing hybrid methods do
not incorporate photographic composition guidance, a key
attribute that defines photographic aesthetics. In this work,
we introduce AesCrop, a composition-aware hybrid image-
cropping model that integrates a VMamba image encoder,
augmented with a novel Mamba Composition Attention Bias
(MCAB) and a transformer decoder to perform end-to-
end rank-based image cropping, generating multiple crops
along with the corresponding quality scores. By explic-
itly encoding compositional cues into the attention mecha-
nism, MCAB directs AesCrop to focus on the most composi-
tionally salient regions. Extensive experiments demonstrate
that AesCrop outperforms current state-of-the-art methods,
delivering superior quantitative metrics and qualitatively
more pleasing crops.

1. Introduction

Image cropping is the process of removing unwanted outer
areas from an image. To crop an image in a visually appeal-
ing way, a solid understanding of image composition prin-
ciples is essential. These principles guide the arrangement
of elements within an image, ensuring balance, focus, and
aesthetic harmony, which in turn directs the viewer’s atten-
tion to the intended subject and conveys the desired message
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Figure 1. AesCrop is a composition-aware, hybrid image-cropping
model that incorporates cues from multiple composition classes
via the Mamba Composition Attention Bias (MCAB) and per-
forms end-to-end rank-based image cropping.

or emotion. However, without sufficient knowledge of aes-
thetic and photographic principles, amateurs often produce
undesirable and unappealing crops.

To address this gap, researchers introduced automatic
image cropping to make aesthetic-driven cropping more
accessible. Early image cropping approaches can be cat-
egorized primarily into two paradigms: evaluation-based
[1, 10, 15-18] and regression-based [2—4, 11, 14] meth-
ods. Evaluation-based approaches generate a fixed num-
ber of candidate crops using heuristic rules, evaluate their
aesthetic quality, and rank them using a separate aesthet-
ics evaluation model. Regression-based methods directly
regress the best candidate crop. In particular, incorporation
of explicit compositional knowledge into image-cropping
methods has been proven effective in enhancing the aes-
thetic appeal of cropped images in both evaluation-based
[17] and regression-based [3, 14] approaches. However,
both paradigms have limitations: the former lacks global-
ity as heuristic-based crop candidates might miss the op-
timal choice, while the latter lacks diversity since gener-
ating a single crop may be insufficient. Recently, hybrid
approaches [5, 19] that simultaneously regress and evalu-



ate multiple candidate crops have been proposed to achieve
better diversity and globality. These methods can gener-
ate pleasing crops but none consider explicit compositional
guidance, which could potentially further enhance the aes-
thetics quality of cropped images.

In this work, we introduce AesCrop, a novel,
composition-aware hybrid cropping model that incorporates
explicit compositional cues to guide cropping, as illustrated
in Fig. 1. Capitalizing on the strength of Mamba’s encoder
in its efficient long-range dependency modeling with linear
computational complexity, we integrates a VMamba-based
encoder [8] that generates rich embedding of the input im-
age with a Conditional DETR-based transformer decoder
[9] that regresses and scores multiple candidate crops using
learnable anchor embeddings. To incorporate explicit com-
positional knowledge, we propose the Mamba Composition
Attention Bias (MCAB), a novel mechanism that extracts
composition cues from a VMamba-based [8] composition
classifier and injects them into the transformer decoder by
modulating its attention weights. MCAB guides the de-
coder to focus on compositionally salient regions, yielding
crops that adhere to established compositional principles.

In summary, our main contributions are as follows:

We present AesCrop, a novel hybrid image cropping
model that incorporates explicit compositional knowl-
edge to simultaneously achieve globality, diversity, and
compositional awareness. Specifically, Mamba Compo-
sition Attention Bias (MCAB), a novel mechanism that
extracts compositional cues from a Mamba-based classi-
fier and injects them into attention weights is introduced
to effectively guide the model to focus on composition-
ally important regions.

Comprehensive experiments and ablation studies vali-
date our architectural design choices and demonstrate that
AesCrop consistently outperforms state-of-the-art meth-
ods in generating aesthetically pleasing crops that adhere
more faithfully to professional photographic composition
rules.

2. Related Work

Existing approaches can be broadly categorized into three
paradigms: evaluation-based, regression-based, and hybrid-
based methods.

Evaluation-Based. In this paradigm, the majority of
works follow a two-step process: (1) generating a num-
ber of candidate crops using heuristic rules, and (2) ranking
each candidate crop to determine the best crops. Within this
framework, several representative approaches have pushed
the state of the art by improving either candidate genera-
tion or crop scoring. Yan et al. [16] proposed a method
that uses regional features taking changes into account to
generate candidate crops, then scores these crops with an
SVM. VEN [1] assumes that web images have the best aes-
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thetics, allowing the model to learn from large-scale pair-
wise ranking in an unsupervised manner. VPN [15] learns
to score image crops in real-time using a novel knowledge
distillation framework. GAIC [18] reduces the candidate
search space using special properties of image cropping,
then ranks the crops using a CNN that models the Rol and
RoD. TransView [10] utilizes a transformer-based architec-
ture to model dependencies between visual elements inside
and outside the bounding box for crop ranking. CLIPCrop-
ping [17] leverages CLIP to learn aesthetic and composition
concepts from dedicated image-text pairs for crop ranking.

Regression-Based. In this paradigm, most approaches
directly regress the coordinates of the optimal crop through
a single-stage process. Within this paradigm, several meth-
ods have driven progress by refining regression strategies or
by injecting domain knowledge into the prediction process.
Guo et al. [2] introduced a cascaded regression method that
progressively refines crop predictions through iterative ad-
justments. Mars [7] adapts a base model to diverse aspect
ratio requirements by employing two meta-learners that dy-
namically generate model parameters based on target aspect
ratios, enabling flexible and precise cropping across vari-
ous formats. CACNet [3] utilizes Class Activation Maps
(CAMs) to extract compositional features through a dedi-
cated composition branch, which are then explicitly inte-
grated into the cropping branch to enhance output quality.
Pan et al. [11] operates on the principle that crops with sim-
ilar boundaries share compositional characteristics, propos-
ing C2C to regularize these features for boundary predic-
tion that generalizes across both common and rare patterns.
GenCrop [4] builds on the assumption that stock images ex-
hibit optimal aesthetics, training its model on a large-scale
image-crop dataset through a diffusion-based outpainting
approach.

Hybrid-Based. The paradigm was first introduced by
Jia et al. [5], who rethink image cropping through a hybrid
method using Conditional DETR with a novel training strat-
egy adapted from DETR. Their work introduced two label
smoothing techniques to provide enhanced learning signals
for crop ranking. Later, ClipCrop [19] extended this ap-
proach by incorporating a CLIP image encoder and adding
conditioned embeddings to the decoder’s learnable anchors,
enabling text- and image-conditional cropping. Notably,
neither of these works in the hybrid paradigm has explic-
itly incorporated compositional knowledge.

3. Methodology

To address the lack of compositional guidance in the hybrid-
based paradigm, we propose AesCrop, a novel hybrid-
based, composition-aware image cropping framework. Ae-
sCrop features dual-stream VMamba encoders [8] that si-
multaneously generate the novel Mamba Composition At-
tention Bias (MCAB) and image embeddings, along with
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The architecture of AesCrop. The input image is processed by dual-stream encoders: (1) a module that generates the Mamba

Composition Attention Bias (MCAB) and (2) an encoder that produces image embeddings. A decoder then refines learnable queries via
self-attention, aggregates those queries with the image embeddings through MCAB-modulated cross-attention, and processes the result
through feed-forward networks. The final embeddings are passed to prediction heads that output crop boxes and quality scores.

a Conditional DETR-based decoder inspired by the design
of Jia et al. [5]. The complete architecture is illustrated in
Fig. 2.

Our framework begins with a dual-stream encoding ar-
chitecture designed to jointly capture both visual semantics
and compositional structure. The visual processing stream
utilizes a VMamba image encoder F; that transforms the
input image I into comprehensive image embeddings E,
which capture essential visual features for crop selection:

E= ]:enc(I) (1)

Simultaneously, the compositional stream generates the
composition attention bias, denoted by B through the
Fmcas module, encoding explicit compositional guidance:

B = Fucas (1) 2)
These components, along with the learnable anchor
queries Q = {q;}¥,, are processed by a Conditional

DETR (C-DETR) [9] decoder Fg.. with M layers. Each
decoder layer first applies self-attention to model global
dependencies among the learnable anchors queries, estab-
lishing their contextual relationships. The layer then per-
forms MCAB-modulated cross-attention, where the con-
textualized queries interact with the image embeddings E
under the guidance of the compositional bias B generated
by MCAB. This attention mechanism dynamically priori-
tizes compositionally salient regions by adjusting attention
weights based on the composition priors from B. Fol-
lowing these cross attention operations, the features un-
dergo non-linear transformation through feed-forward net-
works (FFNs). Through M decoder layers, the decoder pro-
gressively integrates visual features, spatial positions, and
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compositional knowledge into the final output embeddings
O = {0}, where o; represents the refined embedding
for a candidate crop:

O = 74 (E, B, Q) 3)
The final processing stage employs two specialized predic-
tion heads that operate on each output embedding o;. The
crop prediction head fop generates normalized bounding
box coordinates b; € [0, 1]* for each candidate crop, con-
sisting of the predicted center coordinates (¢, ¢) and di-

mensions (¢, k). Simultaneously, the scoring head ficore
produces a normalized quality score ©; € [0, 1] for the cor-
responding candidate crop:

“)
®)

fcrop(oi) = Db; = [é;:a

fscore (Oi) = @z

3.1. Mamba Composition Attention Bias

The Mamba Composition Attention Bias (MCAB) mod-
ule enables AesCrop to incorporate compositional knowl-
edge by adaptively weighting compositionally salient re-
gions. Specifically, the composition attention bias B is
generated through a multi-step process via Fycap. First,
a frozen VMamba composition classifier pretrained on the
KU-PCP dataset [6], which consists of nine image composi-
tion classes, is used to output a probability p; for each class
1. For each predicted class i, Grad-CAM [13] produces a
corresponding Class Activation Map (CAM) C; by com-
puting gradients of the composition class score with respect
to the feature maps. Each C,; is a heatmap that matches the
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Figure 3. Class activation maps of nine images representing dis-
tinct composition classes.

dimension of the input image, with values normalized be-
tween [0, 1] from least important to most important, high-
lighting the regions most relevant to the composition class
1. Examples of these CAMs are illustrated in Fig. 3.

The CAMs are then aggregated through probability-
weighted averaging in the fusion block to generate compo-
sition attention bias, B:

N
B = Zpi -G,
i=1

This operation produces B, a unified global heatmap that
captures the attentive regions corresponding to each com-
position class. Then, B is normalized to the range [0, 1].
The resulting B is downsampled and flattened to spatially
align with the image encoder’s output dimensions, yielding
the final MCAB.

Traditionally, cross-attention between queries Q, keys
K, and values V is computed as:

) v

QK
Vv,

where QK7 represents the attention weights, a matrix of
shape |Q| x |K| whose element at the i-th row and j-th
column indicates how much query ¢ attends to key j. In Ae-
sCrop, this determines how much learnable anchor 7 focuses
on image patch j.

To inject composition knowledge, we modify the cross-
attention mechanism as follows:

QK"
e

Here, B undergoes log-scaling to amplify the weight of
compositionally salient regions relative to non-salient ones,
yielding log B. This log-scaled term is then added to the
original attention weights, biasing the model toward com-
positionally important regions by adjusting the attention of

(6)

T

softmax < 7

softmax ( + log B) A% ®)
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learnable anchor ¢ toward image patch j. This modification
directs the decoder’s focus to areas rich in compositional el-
ements, significantly improving the model’s ability to gen-
erate crop proposals that adhere to compositional principles.

3.2. Hybrid Cropping Training Strategy

Training a hybrid cropping network without fixed anchors
or post-processing steps such as non-maximum suppression
requires an effective matching strategy between predictions
and ground truth crops. Following Jia et al. [5], we first
isolate a set of high-quality ground truths, denoted ¥go0ds
by selecting those with mean opinion scores s; > 4. Ad-
ditionally, we pad yg00q4 With empty objects so as to match
the cardinality of j. Next, we employ the Hungarian Algo-
rithm to establish a one-to-one correspondence & between
our predicted crops ¢ and these high-quality annotations.
This correspondence is chosen to minimize the aggregate
matching loss:

N

6 = argmin Z Limatch (gu ygood,o(i))
7 i=1

€))

Here, the matching loss L ,ch integrates three components:

Ematch(ygood,h yo(i)) = Acreg(l;ia bgood,a(i))
+ Aarou Larou (b, beood,o()) (10)

+ Atocal Lfocal (ﬁu Ugood,cf(i))

where Lreq, Laiou, and Lgoca are the L1 regression loss, the
Generalized IoU loss, and the focal loss, respectively, with
AGlou and Agocar as weighting hyperparameters.

For predicted crops matched to non-empty, high-quality
ground truths, we supervise both their bounding boxes and
quality scores using those matched annotations. However,
the majority of predictions will be matched to an empty ob-
ject. To provide additional learning signals for these predic-
tions, any unmatched prediction that nevertheless overlaps
substantially (IoU > 0.85) with a ground truth crop is super-
vised by assigning it a soft label estimated from the quality
score of its high-IoU neighbor, thus exploiting local redun-
dancy. Finally, for all remaining predictions that neither
match a high-quality crop nor exhibit substantial overlap,
we set their quality scores to zero, providing explicit nega-
tive supervision for low-quality crops.

4. Experiments

4.1. Datasets

We use GAIC [18] dataset as our cropping dataset, as it
is the only sufficiently densely annotated dataset suitable
for training hybrid-based cropping models [5]. Specifically,
we adopt GAICv2, which offers a larger number of im-
ages compared to its predecessor, GAICv1. Additionally,



we use KU-PCP [6] as the composition dataset to train our
VMamba composition classifier.

GAICv2 [18] contains 3,336 images, split into 2,636
training samples, 200 validation samples, and 500 test sam-
ples. Each image includes up to 90 candidate crops anno-
tated with mean opinion scores (MOS) ranging from 1 to 5.
The dataset demonstrates strong annotator agreement, with
94.25% of crops having a score standard deviation below 1.

KU-PCP [6] consists of 4,244 images, divided into
3,169 training samples and 1,075 testing samples. Each im-
age is annotated with one or more of the nine composition
classes: rule of thirds, center, horizontal, vertical, symmet-
ric, diagonal, curved, triangle, and pattern.

4.2. Evaluation Metrics

We evaluate our method using the Return K of Top NV ac-
curacy metric, Accg/n [18], adapted for hybrid-based ap-
proaches [5]. The metric is formally defined as:

T K
I IoU (¢;,5,9) >
>y (g;%o (ci5r9) e)

i=1 j=1
Y
where [(+) is an indicator function that returns 1 when the
condition is true and O otherwise, € is the IoU threshold for
crop matching, T is the total number of test examples, c;_;
represents the top j-th predicted crop for the i-th example,
and S;(N) denotes the set of top N ground truth crops for
the ¢-th example.
We additionally employ the averaged metric Accy, com-
puted as:

1

ACCK/N = TK

1

—_ 12
|SK| (2

Acey =

Z ACCK/N

KeSk

where Sk represents the set of K values under considera-
tion, and | Sk | denotes its cardinality.

4.3. Implementation Details

Dataset Configuration: Both cropping and composi-
tion datasets undergo similar preprocessing pipelines, with
cropping datasets requiring additional steps. All images
are first resized to a fixed 512 x 512 resolution to pre-
serve high-quality details for accurate predictions. During
training, we apply multiple data augmentation techniques to
enhance model robustness, including random variations in
saturation, hue, and contrast. Following augmentation, we
normalize all images using ImageNet’s mean and standard
deviation values to ensure training stability. For cropping
datasets, we perform additional processing by normalizing
ground truth coordinates to the [0,1] range and converting
them to the standardized c,, ¢y, w, h format.

Model Pretraining: AesCrop employs a two-stage pre-
training approach before final training. First, we pretrain the
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composition classifier on KU-PCP [6] and keep its weights
frozen during main training to ensure stable generation of
MCAB. Second, we pretrain the remaining components on
COCO-minitrain [12], a carefully selected 25,000 image
subset of the COCO object detection dataset. This addresses
the limited sample size in existing cropping datasets while
avoiding the computational burden of the full 100,000+ im-
age COCO training set. The COCO-minitrain subset main-
tains the statistical properties of the complete dataset while
offering efficient training. After both pretraining stages
complete, we initialize AesCrop’s corresponding compo-
nents with the learned weights.

Model Configuration: AesCrop predicts N = 90 crops
per image, aligning with the maximum number of annota-
tions available in the GAICv2 [18] dataset. The architec-
ture employs VMamba-T variant for its compactness and
efficiency and M = 6 decoder layers, with loss weights set
t0 Afocal = Aciou = 0.4. The model is optimized using
AdamW, which adapts learning rates dynamically for sta-
ble training. All experiments run on an NVIDIA RTX 4090
GPU with a batch size of 16. The initial learning rate of
10~* is maintained for 40 epochs, then divided by ten for
the final 10 epochs.

4.4. Comparison with Existing Works

Quantitative Comparison: For quantitative evalua-
tion, we employ the Accy/n and Accy metrics for K €
{1,2,3,4} and N € {5,10} on the GAICv2 [18] testing
set with e = 0.90, similar to Jia et al.’s [5] experimental set-
tings. The quantitative results for the existing works were
obtained directly from their papers, and the comparisons
are summarized in Tab. 1. The results show that the pro-
posed model, AesCrop outperforms state-of-the-arts meth-
ods across all evaluated metrics, with a substantial perfor-
mance gain of 7.4% in Accy /5 and 4.7% in Accy10. This
impressive performance demonstrates the effectiveness of
the MCAB module is guiding AesCrop to consider compo-
sition salient regions in generating aesthetically appealing
crops.

Qualitative Comparison: Next, we performed a qual-
itative comparison of AesCrop with two publicly available
models, GAIC [18] and Jia ef al. [5], on six test images
from the GAIC [18] dataset. For GAIC[18], we generate
the crops using the pretrained weights. As Jia et al. [5] did
not provide pretrained weights, we retrained their model us-
ing their original configuration, adjusting the input size to
512 x 512 to align with AesCrop for efficient training. For
each image, we compare the generated crops with the high-
est score for each model, alongside the top three ground
truth crops with the highest Mean Opinion Scores (MOS),
all of which have a score of at least 4. This strategy ensures
that we only compare with crops of high quality. Figure 4
presents a qualitative comparison of these results.



Table 1. Quantitative Comparison. The best results are marked in bold and the second best results are marked with underline.

Model Accyys  Accyys  Acesys Accyys Aces Aceyjig Accyjig Acesjig Accyjio Acerg
VEN [1] 26.6 26.5 26.7 25.7 26.4 40.6 40.2 40.3 39.3 40.1
VPN [15] 36.0 - - - - 48.5 - - - -
VEN [15] 37.5 35.0 353 34.2 35.5 50.5 49.2 48.4 46.4 48.6
GAIC [18] 68.2 64.3 61.3 58.5 63.1 84.4 82.7 80.7 78.7 81.6
TransView [10] 69.0 66.9 61.9 57.8 63.9 85.4 84.1 81.3 78.6 82.4
CLIPCropping [17] 70.0 66.7 63.0 60.0 64.9 87.5 83.7 80.5 78.5 82.5
Jia et al. [5] 72.0 - - - - 86.0 - - - -
AesCrop (Ours) 79.4 75.8 71.5 68.3 73.7 92.2 90.4 87.1 84.8 88.6
The visual comparison reveals that AesCrop can gener- Table 2. Impact of MCAB.

ate more aesthetically pleasing crops compared to the other MCAB Accyys Acey o

models in most cases. In the first image, only AesCrop pre- X 762%  90.8%

served the negative space in front of the children, illustrat- v 79.4%  92.2%

ing a higher correlation with the ground truth crops. Nega-
tive space, an often neglected composition rule in automatic
cropping approaches, defines the focal point and maintain a
sense of balance within the composition. In the second im-
age, AesCrop was also the sole method to remove distract-
ing elements along the left and right borders, effectively di-
recting focus to the Ferris wheel. For the third image, both
AesCrop and Jia et al.’s [5] method successfully eliminated
the black border at the bottom, unlike GAIC [18]. Com-
paratively, AesCrop yielded a more aesthetically pleasing
result with its placement of the snail adhering to the rule of
thirds. In the fourth image, AesCrop and GAIC[ | 8] retained
the full blue arch which plays a crucial role in framing the
scene, while Jia et al. [5] cropped it into half, breaking the
natrual framing effect. The fifth image showed comparable
performance across all models. However, in the sixth im-
age, none of the methods managed to include the rightmost
section of the building in their crops.

We attribute AesCrop’s superior performance to the
MCAB module. To further analyze the role of MCAB, we
selected two examples from Fig. 4 and visualize the com-
position attention bias in Fig. 5. From the first example, we
can observe that MCAB places heavy emphasis on the neg-
ative space beside the children, an important compositional
region that other models failed to capture. In the second ex-
ample, MCAB highlights the blue arch, enabling the model
to preserve the crucial image framing element. These aten-
tion bias heatmaps show that MCAB consistently guides
AesCrop to focus on compositionally salient regions, result-
ing in higher-quality crops.

Overall, AesCrop demonstrates competitive perfor-
mance, matching or exceeding existing models in most eval-
uations. It reliably avoids composition failures present in
other models, notably reducing over-cropping of key se-
mantic regions and demonstrating a stronger adherence to
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Table 3. Impact of Object Detection Pretraining.

Pretrained Accyys  Acey o
X 72.8%  89.6%
v 79.4%  92.2%

professional photographic composition rules. We attribute
this success to two key innovations: (1) VMamba’s ability
to generate rich, comprehensive image encodings, and (2)
the Mamba Composition Attention Bias (MCAB) mecha-
nism, which effectively directs the model’s focus toward
compositionally significant areas.

4.5. Ablation Study

Importance of Mamba Composition Attention Bias:
The MCAB enhances AesCrop by dynamically modulat-
ing attention weights using learned compositional princi-
ples. Quantitative analysis in Tab. 2 shows that removing
MCAB reduces performance by 3.2% on Accy 5 and 1.4%
on Acey /19, verifying its importance. This performance gap
demonstrates that explicit composition modeling through
MCAB is crucial for generating aesthetically optimal crops.

Importance of Object Detection Pretraining: Ae-
sCrop leverages object detection pretraining to boost feature
extraction capabilities. As shown in Tab. 3, this strategy
yields significant gains, with the pretrained model outper-
forms its non-pretrained counterpart by 6.6% on Acc, /5 and
2.6% on Accy /1¢. This improvement reflects the pretrained
model’s superior object localization skills, which enable it
to focus on learning aesthetic importance rather than basic
visual recognition during cropping-specific training.

MCAB aggregation technique: The MCAB attention
prior is generated as a probability-weighted average of



Figure 5. (left) Source image with ground truth (green box), and
AesCrop’s best predicted crops (red box) and (right) the corre-
sponding composition attention priors generated by MCAB.

class activation maps (CAMs). Quantitative comparisons
in Tab. 4 show that this approach outperforms aggregation
approach that considers only the highest-probability CAM,
demonstrating that probability-weighted method can better
preserve compositional diversity. On the other hand, the
max-probability alternative discards valuable information
and introduces noise. This result reinforces the importance
of diversity in photographic composition, whereby multiple
composition rules can be applied to enhance the aesthetics
appeal of a photograph.

Number of Decoder Layers: We empirically deter-

mined the optimal number of decoder layers by evaluating
configurations from 1 to 6 layers. As Fig. 6 demonstrates,
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Table 4. Impact of MCAB Aggregation Technique.

Aggregation Technique Accyys Acey o
Max 76.4%  89.0%
Average 79.4%  92.2%

Accys
s
Accio

T 2 3 3 H 5 T z 3 i H .
Number of Decoder Layers Number of Decoder Layers

Figure 6. Performance across different decoder depths for Acc; /5
(left) and Accy /10 (right).

both accuracy metrics peak at 6 layers, achieving 79.4% for
ACCl/5 and 92.2% for ACC]_/lo.

5. Limitations

Although AesCrop demonstrates remarkable performance,
it is not without limitations. Since AesCrop was trained
on the GAIC [18] dataset, where crops are generated by
heuristic rules, it inherits the pattern, and thus struggles to
achieve true globality.

Moreover, while the MCAB modulates decoder attention
according to the composition structure of the whole image,



Figure 7. (left) Source image with ground truth (green box), and
AesCrop’s best predicted (red box) crops, and (right) AesCrop
composition priors generated by MCAB.

the optimal crop may not always align with it. For exam-
ple, Figure 7 shows a case where the MCAB highlights the
central horizontal region, leading AesCrop to prioritize that
area, even though the optimal crop does not rely on this par-
ticular compositional feature.

6. Conclusion

We introduce AesCrop, a hybrid cropping framework that
incorporates compositional knowledge via Mamba Compo-
sition Attention Bias. By directing decoder attention to-
ward compositionally salient regions, AesCrop achieves su-
perior alignment with human annotations across all metrics,
achieving state-of-the-arts performance. Extensive experi-
ments validate the impact of each architectural component
while revealing two key limitations: heuristic-induced bi-
ases from training data and occasional over-prioritization
of compositional cues. These insights suggest promis-
ing directions for future work to enhance global adaptabil-
ity and further refine aesthetic and compositional integra-
tion.
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