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S1. Overview

This supplementary document provides additional details,
figures, and tables to complement our main paper, “Pre-
dictive Quality Assessment for Mobile Secure Graphics.”
The content herein is intended to offer a deeper insight into
our methodologies and provide the complete, unabridged
results of our empirical evaluation.

S2. Detailed Model Descriptions

Here, we provide further implementation details for each of
the model paradigms evaluated in our work.

Baselines. These simple heuristics establish a perfor-
mance floor. The Random model draws a score from a uni-
form distribution Qandom = U(0,1). The Sharpness
metric is the weighted average of gradient magni-
tudes above an Otsu-derived threshold: Qgnarpness({s) =
(o 9 H@)/ (g, Hlg)), where H(g) is the
gradient histogram. The B1lur metric is a specialized mea-
sure of effective edge width relative to the QR code’s cell
size: Qpur(Is) = u/(t-csp), where u is the number of gray
pixels,  is the number of black-to-white transitions, and csp
is the cell size in pixels.

General-Purpose IQA Models. The BRISQUENSS
model uses the standard implementation from [1]. It
extracts a 36-dimensional feature vector based on the
distribution of Mean Subtracted Contrast Normalized
(MSCN) coefficients and feeds them into a pre-trained
SVR. The CLIP-IQA models use the ViT-L/14 version
of CLIP [3]. The semantic version uses prompts “Good
photo” and “Bad photo”. The attribute-based version
uses engineered prompts: “A high-resolution scan of a
qr-code with crisp, clear, distinct details” (positive) and “A
low-resolution scan of a qr-code with blurry, washed-out,
indistinct details” (negative). The score is the softmax
probability of similarity to the positive prompt.
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Unsupervised (Task-Adapted) Models. The NIQE
(SG) model adapts the NIQE framework [2] by build-
ing a reference Multivariate Gaussian (MVG) model of
BRISQUE features from a corpus of high-quality Secure
Graphic (SG) scans (those with M > 0.95 in our training
set). The quality score is the Mahalanobis distance to this
reference model. NIQE-LBP (SG) follows the same
principle but replaces the NSS-based features with his-
tograms of Local Binary Patterns (LBP), hypothesizing that
texture features are more suitable for non-NSS patterns.

Supervised (Handcrafted) Models. The BRISQUE
(SG | M) model extracts the 36D BRISQUE feature vector
for each image in our training set and trains a Support
Vector Regressor (SVR) with an RBF kernel to map these
features to the ground-truth score M. The LBP (SG|M)
model uses a more sophisticated feature set based on
locally weighted statistics of uniform LBP codes, adapted
from [4]. An extensive hyperparameter search found that a
configuration of P = 8 neighbors at a radius R = 8 yielded
a 10-dimensional feature vector with the best separability,
which was then used to train an SVR.

Supervised (End-to-End) Models. The shallow
CNN-3x32 (SG|M) model consists of three convo-
lutional blocks (3x3 Conv, ReLLU, 2x2 MaxPool) followed
by a regression head of two fully-connected layers. The
MobileNet (SG|M) model uses the MobileNetV2
architecture with randomly initialized weights, trained from
scratch. Our main proposal, MobileNet™ (SG|M), uses
the MobileNetV2 backbone pre-trained on ImageNet,
with the top classification layer replaced by our regression
head, and the entire network is fine-tuned on our SG
dataset.

S3. Full Evaluation Tables

The main paper presents a summarized version of the key
results. Table S| provides the complete, unabridged per-



Table S1. Full unabridged performance results for all models on both test sets. Performance is measured by ApAUC over the 0-70%
discard rate range. Lower values are better. Best performance in each column is in bold, with second-best in italics.

Digital (In-Domain)

Offset (Cross-Domain)

Method

FNMR ApAUC ISRR ApAUC FNMR ApAUC ISRR ApAUC
Baselines
Random 0.2826 0.2967 0.2774 0.3000
Sharpness 0.0412 0.0398 0.0871 0.0894
Blur 0.0441 0.0414 0.0936 0.1003
General-Purpose IQA
BRISQUENSS 0.3504 0.3862 0.2243 0.2468
CLIP-IQA (Semantic) 0.3810 0.4003 0.3970 0.4318
CLIP-IQA (Attribute) 0.2601 0.2701 0.2407 0.2530
Unsupervised (Task-Adapted)
NIQE (SG) 0.0841 0.0828 0.1010 0.1027
NIQE-LBP (SG) 0.0273 0.0270 0.0367 0.0356
Supervised (Handcrafted)
BRISQUE (SG|M) 0.0301 0.0295 0.0574 0.0607
LBP (SGI|M) 0.0185 0.0173 0.0390 0.0411
Supervised (End-to-End)
CNN-3x32 (SG|M) 0.0086 0.0086 0.3441 0.3662
MobileNet (SG|M) 0.0063 0.0064 0.1765 0.1788
MobileNet™ (SG|M) 0.0042 0.0042 0.0800 0.0788

formance results for all evaluated models on both the in-
domain (Digital) and cross-domain (Offset) test sets.

S4. Qualitative Results

This section provides qualitative examples to visually com-
plement the quantitative results, see Figure S1.

S5. Ablation Study: Network Probing

This section provides the complete results for the network
probing analysis described in Experiment 3 of the main pa-
per.

S5.1. Probe Architectures

To test different hypotheses about the feature space, we de-
signed two lightweight probe architectures.

Linear Probe (1in). This simplest probe tests the linear
separability of features at a given layer. Its architecture is a
Global Average Pooling (GAP) layer followed by a single
fully-connected (Dense) layer that maps the feature vector
to the final quality score.

conv + lin Probe. This probe has slightly more ca-
pacity. It consists of a 1 x 1 Convolutional layer, which acts
as a channel-wise feature recombiner, followed by the same
GAP and Dense layer structure as the linear probe. This
allows the model to learn an optimal linear combination of
feature channels before the final regression.

S5.2. Choice of Probe Layer

Table S2 provides the complete numerical results for
both probe architectures and the fine-tuned model, at-
tached to all investigated intermediate blocks of the frozen
MobileNetV2 backbone. This data provides a granu-
lar view of where predictive information resides within the
network and highlights the trade-off between specialization
and generalization, comparing in-domain and cross-domain
performance against the fully fine-tuned model.
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Figure S1. Qualitative Comparison of Probe vs. Fine-Tuned (FT) Models on the Cross-Domain (Offset) Test Set. This grid reveals
a key failure mode of the FT model. When Offset prints are captured with slight blur or low detail (e.g., rows 3, 4, 7), their texture can
incidentally resemble the source (Digital) domain’s characteristics. The FT model, having overfitted to these source-domain artifacts, often
assigns these defective frames an erroneously high quality score. Conversely, the Probe model proves more robust; it correctly assigns low
scores to these degraded frames and, unlike the FT model, reserves its highest scores for the sharpest, highest-fidelity scans (e.g., rows 1
and 3). This highlights the probe’s superior generalization in tracking true fidelity.



Table S2. Complete Unabridged Probe Performance vs. Fine-Tuned Model. This table compares probe performance against the fully
fine-tuned model. Lower ApAUC values are better. The best result in each column is shown in bold.

Digital (In-Domain) Offset (Cross-Domain)
FNMR ApAUC ISRR ApAUC FNMR ApAUC ISRR ApAUC

Probe Arch. Probed Layer

conv + 1in Probes

conv + lin 1IB1 0.0073 0.0077 0.0832 0.0944
conv + lin IB3 0.0042 0.0046 0.0371 0.0403
conv + lin IB6 0.0041 0.0044 0.0289 0.0323
conv + lin IB7 0.0042 0.0046 0.0262 0.0297
conv + lin IB 10 0.0058 0.0060 0.0238 0.0269
conv + lin 1IB13 0.0054 0.0057 0.0290 0.0328
conv + lin IB 14 0.0058 0.0065 0.0444 0.0529
conv + lin IB17 0.0063 0.0066 0.0380 0.0431
conv + lin Conv 18 0.0071 0.0074 0.0471 0.0559
1in Probes
lin IB 1 0.0221 0.0218 0.0805 0.0851
lin IB 3 0.0097 0.0100 0.0378 0.0407
lin IB 6 0.0051 0.0055 0.0323 0.0364
lin IB 7 0.0048 0.0052 0.0302 0.0325
lin IB 10 0.0051 0.0054 0.0259 0.0284
lin IB 13 0.0068 0.0071 0.0231 0.0255
lin IB 14 0.0067 0.0070 0.0334 0.0372
lin IB 17 0.0067 0.0070 0.0375 0.0435
lin Conv 18 0.0084 0.0086 0.0383 0.0427

Fully Fine-Tuned Model (Reference)
MobileNet™ (SG|M) 0.0042 0.0042 0.0800 0.0788
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