Supplemental Material for

Syncalize - Precise Automatic Timecodes for Video and Audio Devices Using
Consumer Hardware

1. Pseudocode Syncalize video decoding

Decoding starts with the ArUco marker detection which is part of the standard OpenCV toolkit. The detected marker edges
are correlated to the coordinates in the normalized pattern coordinate system using the OpenCV findHomography function.
This calculates a 3x3 image transformation homography matrix. The estimated homography is now used to transform the
pattern part of the input image into a normalized flat view of defined dimensions. All positions of runner squares, global
counter squares, and ArUco markers are defined in this normalized coordinate system. The Decoding Algorithm 1 can now
extract the encoded bits of the counter and the state of all runner squares (set or cleared).

The global counter value is derived from the Gray-encoded bits of the gis.; global counter bits. The start and stop of
the longest activated consecutive stretch of ri4.; runner bits is calculated using the Find Longest Consecutive Algorithm 2
yielding runner_start and runner_stop.

Finally, a sub-granularity refinement is calculated for the borders of the runner positions. The edge positions of the runner
are typically not fully captured during the camera’s exposure. The Calculate Subgranularity Algorithm 3 calculates the
fractions of a single pattern frame during which the edges were lit during the camera’s exposure. This information leads to
a higher temporal resolution than the single frame duration. Exposure start and stop times can be calculated by multiplying
runner_start — runner_start_frac with 1/target_framerate (and runner_stop + runner_stop_frac).

2. Pseudocode Syncalize audio decoding

The audio signal is converted into a spectrogram using the SciPy[1] libraries ShortTimeFFT function. This calculates signal
strength per spectrogram bin for N (oversampling) x Bd (Baud rate) timings. For each of the two frequencies used during
encoding (fearrier £ faeviation -0-5) the Spectrum Filtering Algorithm 4 calculates a suitable triangular function (hat function)
frequency filter for all SFFT spectrum bin frequencies.

A dot product between the spectrogram and both spectrum filters results in two filter responses per timing step: one for
the frequency which encodes clear bits (0) and one correlating to set bits (1) in the bitstream. The Compare Downsampling
Algorithm 5 calculates the decoded bitstream.

The bitstream is correlated with the seven-bit Barker code (binary 1110010) to identify potential starting points. This
is done per chunks of (2¥20-1)* N as these should only contain a maximum of one full 20-bit package. The validity and
sub-sample-accurate start of a potential Barker code is calculated using Evaluate Barker Code Algorithm 6. We expect at
least an equivalent of two bits of silence before a timing package (ns;jence_bits = 2). The needed correlation filters are created
by the Create Correlation Filters Algorithm 7. Correlation of a Barker code will result in a quality of 1.0 while misalignment
or missing windows of silence will quickly lower the quality score below zero. Detections meeting a minimum quality score
(e.g. 0.125) are again downsampled with Algorithm 5 (as they are now better centered by the sub-sample-accurate start
information) and decoded by the Hamming decoder. If fewer than two bit errors are detected, then this package (decoded
timecode and sub-sample-accurate time within the audio file) is added to the list of decoded packages, decoding continues N
samples after the decoded package. Otherwise, up to N samples of phase offsets are applied to the current chunk to find a
valid timecode. The final list of all decoded samples is filtered by calculating the difference between the encoded time value
and the position within the audio file. The mean value from all samples within the 25%-75% Quantile of these differences is
chosen as the final robust estimation for the overall synchronization offset.

Algorithm 1 Decoding Algorithm

T N T N S N e S Sy SeTOuy GUTG S R
PRV RIINR RN Q

S
»

NS)
N W

27:

28:
29:
30:
31:
32:
33:
34:
35:

@R R Wy s

ng < 8
Ng < 4
Ne < 4 *n,

s A < 0.125
: form;:()tonr—ldo

Ariinner < median brightness of inner area
Ariporder < median of surrounding border
Lrival — Ariinner - Ariborder

. end for
: for gi = 0tong —1do

Agi;pner < median brightness of inner area
AGiporder < median of surrounding border
Lgival — Agl - Agiborder

mner

: end for
: forcj =0ton.—1do

Acj;mer < median brightness of inner area
Acjporder < median of surrounding border
ijax < chinner - chborder

: end for
: forri=0ton, —1do

ne—1
2.5 coordgistance(ri,cj)-Limaa

Lripas <
max E?f;ol coordgistance(ri,cj)

: end for
: for gi =0tonyg —1do

E?;E ! coordgistance(gi,cj)-Limaax

Z:]?:’Ol coordgistance(gi,cj)
end for
Lthr — Lxlmar .)\lit
for ri =0ton, —1do
riset — (Lrival > Lthr)
end for
for gi =0tony, —1do
Glset < (Lgi’ual > Lthr)
end for

: Input: Image, list of coordinates for positions of runner squares, binary counter squares, and ArUco marker corner bits
: Output: State (set/cleared) of runner squares and global counter squares
DNy 30

> Number of runners, e.g. 6x5 = 30

> Number of global counter bits

> Number of ArUco markers

> Number of ArUco marker corners

> Dynamic threshold, Hyperparameter
> Runner at index 71

> Global counter bit at index g:

> Corner bits ¢j from markers

3. Used Timing Pattern Statistic

Tab. 2 show statistics on the Syncalize video timing pattern used for all experiments. The video’s audio track uses the
Syncalize audio encoding by superimposing three individual signals: 11kHz at 24baud with one package per second, 3kHz at
48baud with two packages per second, and 7.7kHz at 72baud with four packages per second. All baud rates are multiples of
24 so the result of one SFFT for 72baud (oversampling 8) can be used for all three signals.

4. iPhone as a pattern playback device

We repeated our controlled exposure experiments using an iPhone 15 Pro with a 6.1 inch 460 ppi OLED display as our pattern
playback device. Fig. | shows views similar to the original paper’s Figure 5. A slight degradation in estimation accuracy is
observed in the new results Tab. | compared to the original paper’s Table 1 (where a Lenovo tablet was used). This can be
attributed to the considerably smaller display size of the iPhone compared to the tablet. Nevertheless, the timing estimates
remain within the single-digit ms range, which is sufficient for most practical applications. The iPhone’s adaptive screen
refresh rate was no problem for the test and stayed at 120Hz during playback of the Syncalize video file.

Algorithm 2 Find Longest Consecutive

: Input: List of binary values

: Output: start index and stop index

: n < length of values

padded < concatenate([0], values, values|.. — 1], [0])
: dif f + padded|l..] — padded|.. — 1]

. starts < indices where dif f = 1

ends < indices where dif f = —1

: lengths < ends — starts

: maz_idr < index of maximum value in lengths
. start_index < startsimaz_idz] mod n

. end_index + (ends[max_idz] — 1) mod n

—_ =
—_ O

Algorithm 3 Calculate Subgranularity

: Imput: List of riset, L7T0yai, LT0maz, runner index start and stop
: Output: Fraction for runner start and stop
: rnext < (start + 1) mod n,
rprev < (stop +n, — 1) mod n,
if rnext == rprev or start == stop then
Lrnextyyy < Lrnext gy
Lrprevyyy < Lrprevmas
else
Lrnextyuy < Lrnext,q
Lrpreveyy < Lrprevyg
: end if
. start_frac <— Lrstart,q /Lrnect puy
. stop_frac < Lrstopyq/Lrpreveu

R A A A S o e

— e e
W N = O

Algorithm 4 Spectrum Filtering

1: Input: List of frequencies, frequency f, and fgeviation

2: Output: List of Weights ([0..1] per frequency)

3: n < number of frequencies

4: weights < []

5: fort: =0ton — 1do

6: wiy + min(max(| frequencies(i] — f|/ faeviation,0),1)
7: weights <— concatenate(weights, [wis])

8: end for

EH GE & i
i][] Q| | [| "
S0 B A0 B0 B IO B
og]] =]] CIC T liﬂ
4ms 8 ms 16 ms 24 ms 30 ms

Figure 1. Examples of recorded images (top) and decoded pattern (bottom) for different exposure times from experiments in Tab. 1. The
reference LED-Panel is visible in the top right of each image. Each LED is active for 1 ms.

Algorithm 5 Compare Downsampling

—_ =
[I S

14:

18:
19:

R A A R

= e

Input: Filter response 7, 1 for bit 0 and bit 1, oversampling factor N
Output: Resulting downsampled bit stream
nry <— number of samples in 7
n < nro/N > Number of result bits
bitresults < []
fori =0ton —1do
ent_as_1 <0 > Count where bit 1 response is greater than bit O response
for)=0to N —1do
if ri[i - N+ j] > ro[i - N + j] then
cnt_as-l <—cnt_as_1+1
end if
end for
if cnt_as_1 >= N/2 then
bi 1
else
bi <0
end if
bitresults + concatenate(bitresults, [bi])
end for

Algorithm 6 Evaluate Barker Code

1:

R A A o

[T N T N e e S Sy S g S

Input: Filter response 1, 71 for bit O and bit 1, oversampling factor NV, potential start index s¢ for barker code, bits of
silence expected before barker code ngience_pits, correlation filters corry and corry

Output: Quality of correlation with Barker code and subsample accurate start index

Athrnigh < 0.125 > Dynamic activation threshold is calculated from 12.5% quantile
Nsilence_samples < Ngilence bits * N

bmin < 8t — N — Ngilence_samples > Search optimum in £ /V neighborhood
Z‘m,am —si+ N — Nsilence_samples

ll_highy < Quantile(ro[imin--Imaz], AMthr_high)

ll_highy < Quantile(ro[imin--imaz], AMthr_high)

n < length of correlation filter corrg

quality value < []

: quality_index < []
: for i = 1,,;, to zmaz do

R ~o Y coorg[j] - rolii +n — 1)/ wl_highg
Q= >0, Y coor1[j] - i +n — 1]/Ivl_highy
qi < /qo*qo+ g1 *q1

quality value < concatenate(quality,alue, [q])
quality index < concatenate(quality;ndex, [qi])

: end for

. max_idr < argmax(quality value)

. sub_acc_part <+ Find Parabola Maximum (Algorithm 8) for quality,alue[maz_idx — 1]..max_idx + 1]
. sub_frame_accurate_start < quality;ndex|mazx_idx] + sub-acc_part

. mazxgquality < quality_valuemaz_idz)

Algorithm 7 Create Correlation Filters

1:

— == =
R T

15:

Input: List representing Barker code bits, oversampling factor NV, expected bits of pause before barker code n.s;ience_bits»

correlation filters corrg and corry

: Output: Two correlation filters corrg and corry
: n < number of Barker code bits

weightbarker = 10/”
weightsilence = 1-O/nsilence,bits

2 corrg <[]
2 corry <[]
: for i = 0 to Ngiiencenits * N — 1 do

corrg < concatenate(corrg,[—weightsiience])
corry < concatenate(corry,[—weightsiience])

. end for
:fori=0ton —1do

if Barker code bit at index i is set then
weighty < —weightparker
weighty < weightparker
else
weighty < weightpgrker
weight| < —weightperker
end if
for)=0to N —1do
corrq < concatenate(corrg,[weighty])
corry < concatenate(corry,[weighti])
end for

. end for

Algorithm 8 Find Parabola Maximum

[S N R S

: Input: List of three values [prev, curr, next]

: Output: Position of maximum of a fitted parabola in relation to the central value

: coef fparapola < Order 2 Polynomial for x=[0,1,2], f(x)=[0, curr-prev, next-prev])
. rel-maz_unbound < —coef fparabola[1]/(2 - coef fparabola[0]) — 1

: rel_max < min(max(rel_max_unbound, -0.5), 0.5)

> (e.g. np.polyfit(..,..,2))

iPhone OAt frame rate exposure time

mean err mean err
ms Hz Hz ms ms

camera: 8.1 Hz
4ms 1.41 | 8.07 ¢0.10 —0.03 | 8.06 ¢0.66 4.06
8 ms 1.17 | 8.10 ¢0.09 0.00 | 8.06 02.24 0.06
16 ms 1.71 | 8.10 ¢0.04 0.00 | 13.88 03.38 —2.12
24 ms 3.51 | 8.10 ¢0.01 0.00 | 23.84 ¢1.18 —0.16
36 ms 0.88 | 8.10 ¢0.04 0.00 | 36.00 01.02 0.00

camera: 20 Hz
4ms 0.02 | 20.00 ¢0.00 0.00 | 8.32 ¢0.03 4.32
8 ms 2.84 | 20.00 ¢0.01 0.00 | 5.27 01.00 —2.73
16 ms 0.34 | 20.00 ¢0.02 0.00 | 17.97 ¢0.15 1.97
24 ms 3.50 | 20.00 ¢0.02 0.00 | 23.79 ¢0.98 —0.21
36 ms 0.30 | 20.00 ¢0.04 0.00 | 37.00 ¢0.12 1.00

Table 1. Syncalize estimation accuracy of video offset uncertainty
(oat), frame rate, and exposure time at fixed frame rates and ex-
posure times with pattern played on an iPhone 15 Pro. All values
computed from 150 estimates.

playback rate 120 Hz
single frame duration 8.33ms
number of runner position 30
runner duration 250 ms
global counter range (8-bit\{0}) 255
total number of frames 7650
total runtime 63.75s

Table 2. Timing statistics of the pattern sequence with a playback

rate of 120 Hz.

References

[1] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, {lhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Lax-
alde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Anténio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods, 17:261-272,
2020. 1

	Pseudocode Syncalize video decoding
	Pseudocode Syncalize audio decoding
	Used Timing Pattern Statistic
	iPhone as a pattern playback device

