
Supplemental Material for
Syncalize - Precise Automatic Timecodes for Video and Audio Devices Using

Consumer Hardware

1. Pseudocode Syncalize video decoding

Decoding starts with the ArUco marker detection which is part of the standard OpenCV toolkit. The detected marker edges
are correlated to the coordinates in the normalized pattern coordinate system using the OpenCV findHomography function.
This calculates a 3x3 image transformation homography matrix. The estimated homography is now used to transform the
pattern part of the input image into a normalized flat view of defined dimensions. All positions of runner squares, global
counter squares, and ArUco markers are defined in this normalized coordinate system. The Decoding Algorithm 1 can now
extract the encoded bits of the counter and the state of all runner squares (set or cleared).

The global counter value is derived from the Gray-encoded bits of the giset global counter bits. The start and stop of
the longest activated consecutive stretch of riset runner bits is calculated using the Find Longest Consecutive Algorithm 2
yielding runner start and runner stop.

Finally, a sub-granularity refinement is calculated for the borders of the runner positions. The edge positions of the runner
are typically not fully captured during the camera’s exposure. The Calculate Subgranularity Algorithm 3 calculates the
fractions of a single pattern frame during which the edges were lit during the camera’s exposure. This information leads to
a higher temporal resolution than the single frame duration. Exposure start and stop times can be calculated by multiplying
runner start− runner start frac with 1/target framerate (and runner stop+ runner stop frac).

2. Pseudocode Syncalize audio decoding

The audio signal is converted into a spectrogram using the SciPy[1] libraries ShortTimeFFT function. This calculates signal
strength per spectrogram bin for N (oversampling) × Bd (Baud rate) timings. For each of the two frequencies used during
encoding (fcarrier±fdeviation ·0.5) the Spectrum Filtering Algorithm 4 calculates a suitable triangular function (hat function)
frequency filter for all SFFT spectrum bin frequencies.

A dot product between the spectrogram and both spectrum filters results in two filter responses per timing step: one for
the frequency which encodes clear bits (0) and one correlating to set bits (1) in the bitstream. The Compare Downsampling
Algorithm 5 calculates the decoded bitstream.

The bitstream is correlated with the seven-bit Barker code (binary 1110010) to identify potential starting points. This
is done per chunks of (2*20-1)*N as these should only contain a maximum of one full 20-bit package. The validity and
sub-sample-accurate start of a potential Barker code is calculated using Evaluate Barker Code Algorithm 6. We expect at
least an equivalent of two bits of silence before a timing package (nsilence bits = 2). The needed correlation filters are created
by the Create Correlation Filters Algorithm 7. Correlation of a Barker code will result in a quality of 1.0 while misalignment
or missing windows of silence will quickly lower the quality score below zero. Detections meeting a minimum quality score
(e.g. 0.125) are again downsampled with Algorithm 5 (as they are now better centered by the sub-sample-accurate start
information) and decoded by the Hamming decoder. If fewer than two bit errors are detected, then this package (decoded
timecode and sub-sample-accurate time within the audio file) is added to the list of decoded packages, decoding continues N
samples after the decoded package. Otherwise, up to N samples of phase offsets are applied to the current chunk to find a
valid timecode. The final list of all decoded samples is filtered by calculating the difference between the encoded time value
and the position within the audio file. The mean value from all samples within the 25%-75% Quantile of these differences is
chosen as the final robust estimation for the overall synchronization offset.

1

Algorithm 1 Decoding Algorithm

1: Input: Image, list of coordinates for positions of runner squares, binary counter squares, and ArUco marker corner bits
2: Output: State (set/cleared) of runner squares and global counter squares
3: nr ← 30 ▷ Number of runners, e.g. 6x5 = 30
4: ng ← 8 ▷ Number of global counter bits
5: na ← 4 ▷ Number of ArUco markers
6: nc ← 4 * na ▷ Number of ArUco marker corners
7: λlit ← 0.125 ▷ Dynamic threshold, Hyperparameter
8: for ri = 0 to nr − 1 do ▷ Runner at index ri
9: Ãriinner ← median brightness of inner area

10: Ãriborder ← median of surrounding border
11: Lrival ← Ãriinner − Ãriborder
12: end for
13: for gi = 0 to ng − 1 do ▷ Global counter bit at index gi

14: Ãgiinner ← median brightness of inner area
15: Ãgiborder ← median of surrounding border
16: Lgival ← Ãgiinner − Ãgiborder
17: end for
18: for cj = 0 to nc − 1 do ▷ Corner bits cj from markers
19: Ãcjinner ← median brightness of inner area
20: Ãcjborder ← median of surrounding border
21: Ljmax ← Ãcjinner − Ãcjborder
22: end for
23: for ri = 0 to nr − 1 do
24: Lrimax ←

∑nc−1
j=0 coorddistance(ri,cj)·Ljmax∑nc−1

cj=0 coorddistance(ri,cj)

25: end for
26: for gi = 0 to ng − 1 do

27: Lgimax ←
∑nc−1

j=0 coorddistance(gi,cj)·Ljmax∑nc−1
cj=0 coorddistance(gi,cj)

28: end for
29: Lthr ← L̃ximax · λlit

30: for ri = 0 to nr − 1 do
31: riset ← (Lrival > Lthr)
32: end for
33: for gi = 0 to ng − 1 do
34: giset ← (Lgival > Lthr)
35: end for

3. Used Timing Pattern Statistic
Tab. 2 show statistics on the Syncalize video timing pattern used for all experiments. The video’s audio track uses the
Syncalize audio encoding by superimposing three individual signals: 11kHz at 24baud with one package per second, 3kHz at
48baud with two packages per second, and 7.7kHz at 72baud with four packages per second. All baud rates are multiples of
24 so the result of one SFFT for 72baud (oversampling 8) can be used for all three signals.

4. iPhone as a pattern playback device
We repeated our controlled exposure experiments using an iPhone 15 Pro with a 6.1 inch 460 ppi OLED display as our pattern
playback device. Fig. 1 shows views similar to the original paper’s Figure 5. A slight degradation in estimation accuracy is
observed in the new results Tab. 1 compared to the original paper’s Table 1 (where a Lenovo tablet was used). This can be
attributed to the considerably smaller display size of the iPhone compared to the tablet. Nevertheless, the timing estimates
remain within the single-digit ms range, which is sufficient for most practical applications. The iPhone’s adaptive screen
refresh rate was no problem for the test and stayed at 120Hz during playback of the Syncalize video file.

Algorithm 2 Find Longest Consecutive

1: Input: List of binary values
2: Output: start index and stop index
3: n← length of values
4: padded← concatenate([0], values, values[..− 1], [0])
5: diff ← padded[1..]− padded[..− 1]
6: starts← indices where diff = 1
7: ends← indices where diff = −1
8: lengths← ends− starts
9: max idx← index of maximum value in lengths

10: start index← starts[max idx] mod n
11: end index← (ends[max idx]− 1) mod n

Algorithm 3 Calculate Subgranularity

1: Input: List of riset, Lrival, Lrimax, runner index start and stop
2: Output: Fraction for runner start and stop
3: rnext← (start+ 1) mod nr

4: rprev ← (stop+ nr − 1) mod nr

5: if rnext == rprev or start == stop then
6: Lrnextfull ← Lrnextmax

7: Lrprevfull ← Lrprevmax

8: else
9: Lrnextfull ← Lrnextval

10: Lrprevfull ← Lrprevval
11: end if
12: start frac← Lrstartval/Lrnextfull
13: stop frac← Lrstopval/Lrprevfull

Algorithm 4 Spectrum Filtering

1: Input: List of frequencies, frequency f , and fdeviation
2: Output: List of Weights ([0..1] per frequency)
3: n← number of frequencies
4: weights← []
5: for i = 0 to n− 1 do
6: wif ← min(max(|frequencies[i]− f |/fdeviation,0),1)
7: weights← concatenate(weights, [wif])
8: end for

4ms 8ms 16ms 24ms 30ms

Figure 1. Examples of recorded images (top) and decoded pattern (bottom) for different exposure times from experiments in Tab. 1. The
reference LED-Panel is visible in the top right of each image. Each LED is active for 1ms.

Algorithm 5 Compare Downsampling

1: Input: Filter response r0, r1 for bit 0 and bit 1, oversampling factor N
2: Output: Resulting downsampled bit stream
3: nr0 ← number of samples in r0
4: n← nr0/N ▷ Number of result bits
5: bitresults← []
6: for i = 0 to n− 1 do
7: cnt as 1← 0 ▷ Count where bit 1 response is greater than bit 0 response
8: for j = 0 to N − 1 do
9: if r1[i ·N + j] > r0[i ·N + j] then

10: cnt as 1← cnt as 1 + 1
11: end if
12: end for
13: if cnt as 1 >= N/2 then
14: bi← 1
15: else
16: bi← 0
17: end if
18: bitresults← concatenate(bitresults, [bi])
19: end for

Algorithm 6 Evaluate Barker Code

1: Input: Filter response r0, r1 for bit 0 and bit 1, oversampling factor N , potential start index si for barker code, bits of
silence expected before barker code nsilence bits, correlation filters corr0 and corr1

2: Output: Quality of correlation with Barker code and subsample accurate start index
3: λthrhigh ← 0.125 ▷ Dynamic activation threshold is calculated from 12.5% quantile
4: nsilence samples ← nsilence bits ·N
5: imin ← si−N − nsilence samples ▷ Search optimum in ±N neighborhood
6: imax ← si+N − nsilence samples

7: lvl high0 ← Quantile(r0[imin..imax], λthr high)
8: lvl high1 ← Quantile(r0[imin..imax], λthr high)
9: n← length of correlation filter corr0

10: quality value← []
11: quality index← []
12: for i = imin to imax do
13: q0 ←

∑n−1
j=0 coor0[j] · r0[i..i+ n− 1]/lvl high0

14: q1 ←
∑n−1

j=0 coor1[j] · r1[i..i+ n− 1]/lvl high1

15: qi←
√
q0 ∗ q0 + q1 ∗ q1

16: quality value← concatenate(qualityvalue, [q])
17: quality index← concatenate(qualityindex, [qi])
18: end for
19: max idx← argmax(quality value)
20: sub acc part← Find Parabola Maximum (Algorithm 8) for qualityvalue[max idx− 1]..max idx+ 1]
21: sub frame accurate start← qualityindex[max idx] + sub acc part
22: maxquality ← quality value[max idx]

Algorithm 7 Create Correlation Filters

1: Input: List representing Barker code bits, oversampling factor N , expected bits of pause before barker code nsilence bits,
correlation filters corr0 and corr1

2: Output: Two correlation filters corr0 and corr1
3: n← number of Barker code bits
4: weightbarker = 1.0/n
5: weightsilence = 1.0/nsilence bits

6: corr0 ← []
7: corr1 ← []
8: for i = 0 to nsilence bits ∗N − 1 do
9: corr0 ← concatenate(corr0,[−weightsilence])

10: corr1 ← concatenate(corr1,[−weightsilence])
11: end for
12: for i = 0 to n− 1 do
13: if Barker code bit at index i is set then
14: weight0 ← −weightbarker
15: weight1 ← weightbarker
16: else
17: weight0 ← weightbarker
18: weight1 ← −weightbarker
19: end if
20: for j = 0 to N − 1 do
21: corr0 ← concatenate(corr0,[weight0])
22: corr1 ← concatenate(corr1,[weight1])
23: end for
24: end for

Algorithm 8 Find Parabola Maximum

1: Input: List of three values [prev, curr, next]
2: Output: Position of maximum of a fitted parabola in relation to the central value
3: coeffparabola ← Order 2 Polynomial for x=[0,1,2], f(x)=[0, curr-prev, next-prev]) ▷ (e.g. np.polyfit(..,..,2))
4: rel max unbound← −coeffparabola[1]/(2 · coeffparabola[0])− 1
5: rel max← min(max(rel max unbound, -0.5), 0.5)

iPhone σ∆t frame rate exposure time
mean err mean err

ms Hz Hz ms ms

camera: 8.1Hz

4ms 1.41 8.07 σ0.10 −0.03 8.06 σ0.66 4.06
8ms 1.17 8.10 σ0.09 0.00 8.06 σ2.24 0.06
16ms 1.71 8.10 σ0.04 0.00 13.88 σ3.38 −2.12
24ms 3.51 8.10 σ0.01 0.00 23.84 σ1.18 −0.16
36ms 0.88 8.10 σ0.04 0.00 36.00 σ1.02 0.00

camera: 20Hz

4ms 0.02 20.00 σ0.00 0.00 8.32 σ0.03 4.32
8ms 2.84 20.00 σ0.01 0.00 5.27 σ1.00 −2.73
16ms 0.34 20.00 σ0.02 0.00 17.97 σ0.15 1.97
24ms 3.50 20.00 σ0.02 0.00 23.79 σ0.98 −0.21
36ms 0.30 20.00 σ0.04 0.00 37.00 σ0.12 1.00

Table 1. Syncalize estimation accuracy of video offset uncertainty
(σ∆t), frame rate, and exposure time at fixed frame rates and ex-
posure times with pattern played on an iPhone 15 Pro. All values
computed from 150 estimates.

playback rate 120Hz

single frame duration 8.33ms
number of runner position 30
runner duration 250ms

global counter range (8-bit\{0}) 255
total number of frames 7650

total runtime 63.75 s

Table 2. Timing statistics of the pattern sequence with a playback
rate of 120Hz.

References
[1] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt

Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Lax-
alde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods, 17:261–272,
2020. 1

	Pseudocode Syncalize video decoding
	Pseudocode Syncalize audio decoding
	Used Timing Pattern Statistic
	iPhone as a pattern playback device

