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Domain-Switching Cross Attention

Supplementary Material

The supplementary material is organized into three sec-
tions. Appendix Al details the used LLM prompts, Ap-
pendix A2 outlines the network architecture details, Ap-
pendix A3 shows the LCDM’s performance, and Ap-
pendix A4 presents additional qualitative comparisons.

Al. LLM Prompt Design

We design a specific prompt for the LLM (GPT-40) to en-
sure accurate and reliable classification of day and night
conditions in images. The prompt is formulated as follows:

“Analyze this image and determine whether it is
Day or Night. If it is daytime, output 'Day’. If it
is nighttime, output 'Night’.

The output must strictly follow this format: - Time
: [Classification Result].”

The Large Language Model (LLM) analyzes the image’s
characteristics using the specific prompt to determine its
temporal condition. By systematically evaluating visual
cues such as lighting, color temperature, and atmospheric
conditions, the model precisely classifies the image as ei-
ther *Day’ or ’Night’. This approach ensures a consistent
and reliable method of time-of-day identification across di-
verse visual contexts.
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Figure Al. Day and Night Class Distribution Across Datasets

In analyzing the day and night class distribution across
three distinct datasets, we observed significant variations in
temporal representation. The FLIR dataset exhibits a pro-
nounced imbalance, with daytime images comprising ap-
proximately 79.29% of the dataset, while nighttime images

account for only 18.53%. In contrast, the FMB dataset
demonstrates a nearly balanced distribution, with daytime
images at 49.80% and nighttime images at 48.20%. This
near-even split indicates a more uniform representation of
temporal conditions, which could be beneficial for training
models with equal exposure to day and night environments.
The MFNET dataset shows a slightly different pattern, with
nighttime images marginally outnumbering daytime images
(46.46% night versus 41.87% day).

A2. Network Architecture Details

The proposed neural network architecture features a sophis-
ticated encoder-decoder structure with a bottleneck layer,
designed to efficiently process and transform visual features
through carefully orchestrated computational blocks.

A2.0.1. Encoder Architecture

The encoder pathway consists of 11 sequential blocks orga-

nized into three resolution stages. Each stage contains three

consecutive processing units followed by a downsampling
operation (except for the final stage). The architecture fol-
lows this pattern:

* First Stage (16 channels): Three sequential units, each
consisting of an IVIF residual block (16— 16 channels),
an IVIF high-attention block (16 channels with 4 heads),
and another IVIF residual block (16— 16 channels). A
depth downsampling operation follows, maintaining 16
channels.

* Second Stage (24 channels): Three sequential units with
IVIF residual blocks (initial transition from 16—24 chan-
nels, then 24—24 channels), IVIF high-attention blocks
(24 channels with 4 heads), and IVIF residual blocks
(24—24 channels). A depth downsampling operation fol-
lows, maintaining 24 channels.

* Third Stage (32 channels): Three sequential units with
IVIF residual blocks (initial transition from 24— 32 chan-
nels, then 32—32 channels), IVIF high-attention blocks
(32 channels with 4 heads), and IVIF residual blocks
(32—32 channels).

A2.0.2. Bottleneck Layer

The bottleneck connecting the encoder and decoder path-
ways consists of a single IVIF residual block that processes
and maintains 32 channels (32— 32 channels). This bottle-
neck preserves essential information while reducing com-
putational complexity.



A2.0.3. Decoder Architecture

The decoder pathway mirrors the encoder but in reverse or-
der, progressively recovering spatial resolution through 11
blocks organized in three stages:

* First Stage (32 channels): Three sequential units with
IVIF residual blocks (32—32 channels), IVIF high-
attention blocks (32 channels with 4 heads), and IVIF
residual blocks (the final one transitioning from 32—24
channels). An upsampling operation follows, maintain-
ing 24 channels.

* Second Stage (24 channels): Three sequential units
with IVIF residual blocks (24—24 channels), IVIF high-
attention blocks (24 channels with 4 heads), and IVIF
residual blocks (the final one transitioning from 24—16
channels). An upsampling operation follows, maintain-
ing 16 channels.

* Third Stage (16 channels): Three sequential units with
IVIF residual blocks (16—16 channels), IVIF high-
attention blocks (16 channels with 4 heads), and IVIF
residual blocks (16— 16 channels).

A2.1. Efficiency Analysis

We conducted a comprehensive performance analysis com-
paring the proposed ADS-CA module with the baseline spa-
tial attention mechanism across various configurations. Our
experiments covered different input resolutions (32x32,
64x 64, 128 x 128), feature dimensions (16, 24, 32), and at-
tention head counts (2, 4, 8), with a batch size of 1 for all
test scenarios.

A2.1.1. Memory Efficiency

The ADS-CA module demonstrates remarkable memory ef-
ficiency compared to the baseline spatial attention mecha-
nism, as illustrated in Figure A2. The memory consump-
tion differences become increasingly pronounced at higher
resolutions:

e At 32x32resolution: ADS-CA consumes approximately
29.1-30.0 MB across all configurations, whereas the base-
line requires 44.8-93.4 MB, representing a 1.5-3.1x in-
crease in memory usage.

* At 6464 resolution: The memory efficiency gap widens
significantly, with ADS-CA requiring only 31.7-161.8
MB compared to the baseline’s 286.5-1184.8 MB, yield-
ing a 4.2-37.3 X memory advantage.

e At 128x128 resolution: The difference becomes dra-
matic, with ADS-CA utilizing just 167.2-178.3 MB ver-
sus the baseline’s 4261.2-16558.3 MB, reflecting a 23.9-
98.4x improvement in memory efficiency.

Particularly notable is the scaling behavior with respect to

resolution. While the baseline model’s memory consump-

tion increases quadratically with spatial dimensions due
to the attention computation across all pixel positions, the

ADS-CA module’s memory requirement grows linearly, as

it applies attention along the channel dimension rather than
the spatial dimension.

A2.1.2. Computational Efficiency

The inference time measurements reveal equally substantial

performance benefits:

* At 32x32 resolution: Both approaches exhibit compara-
ble inference times (approximately 0.44 ms for ADS-CA
versus 0.26 ms for baseline).

e At 6464 resolution: ADS-CA maintains consistent in-
ference times (0.44-0.46 ms) while the baseline shows in-
creased latency (1.09-3.57 ms), representing a 2.4-8.0x
speed advantage for ADS-CA.

e At 128x128 resolution: The computational efficiency
gap becomes most pronounced, with ADS-CA maintain-
ing inference times of around 0.45-0.46 ms compared to
the baseline’s 14.48-57.72 ms, yielding a 31.5-126.8x
speed advantage.

Notably, the inference time of ADS-CA remains nearly con-

stant across all resolutions, demonstrating the scalability ad-

vantage of channel-wise attention compared to the spatial
attention mechanism.

Comprehensive Comparison: Memory and Time (Batch=1, Heads=4)
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Figure A2. Comprehensive comparison of memory usage (top)
and inference time (bottom) between ADS-CA (left) and base-
line (right) attention mechanisms with batch size=1 and 4 atten-
tion heads. The heat maps illustrate performance metrics across
different input resolutions (32x32, 64 x 64, 128 x 128) and feature
dimensions (16, 24, 32). Note the significant scale differences be-
tween ADS-CA and baseline, particularly for the 128 x 128 reso-
lution where ADS-CA demonstrates up to 50x memory efficiency
and 65 x computational efficiency.

A3. LCDM Performance Evaluation

This section provides a detailed quantitative evaluation of
the final trained LCDM model. The model was evaluated
on a test set, which was not used during the training. Ta-



ble 6 summarizes the key classification performance met-
rics, demonstrating the model’s high efficacy in distinguish-
ing between day and night images.

Metric Score

Accuracy 0.9796
Precision  0.9785
Recall 0.9785
F1-Score 0.9785

Table 6. Performance metrics of the LCDM model on the test
dataset.

A4. Additional Qualitative Comparisons

Additional qualitative comparisons are provided to further
illustrate the performance and effectiveness of our method.
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Figure A3. Qualitative comparisons with different models.
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Figure A4. Qualitative comparisons with different models.
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Figure AS. Qualitative comparisons with different models.
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Figure A6. Qualitative comparisons with different models.



