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Figure 1. Performance over time of open-vocabulary semantic (left) and panoptic (right) segmentation methods (COCO→ADE20K). The
blue dashed line denotes the Mask2Former supervised performance with a comparable backbone. Colored circles/crosses denote different
open-vocabulary methods. We observe that the open-vocabulary methods have hit a plateau, lagging behind supervised models.

Abstract

Standard segmentation setups are unable to deliver models
that can recognize concepts outside the training taxonomy.
Open-vocabulary approaches promise to close this gap
through language-image pretraining on billions of image-
caption pairs. Unfortunately, we observe that the promise
is not delivered due to several bottlenecks that have caused
the performance to plateau for almost two years. This paper
proposes novel oracle components that identify and decou-
ple these bottlenecks by taking advantage of the groundtruth
information. The presented validation experiments deliver
important empirical findings that provide a deeper insight
into the failures of open-vocabulary models and suggest
prominent approaches to unlock the future research.

1. Introduction
Image segmentation is an important task in computer vision,
supporting wide range of applications such as autonomous
driving [9], medical imaging [45], and remote sensing [10].
The task has been well-studied under different paradigms
such as semantic [38], instance [20], and panoptic segmen-
tation [24], which unifies the former two. Despite strong
progress in validation accuracy [6, 51], most of the conven-
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tional methods remain constrained to reasoning within the
training taxonomy. This rigidity hinders generalization ca-
pabilities and application potential in the wild.

Recently, vision-language models (VLM) have emerged
as a promising solution for recognition beyond the training
taxonomy [21, 43]. Recognition based on image-text simi-
larities enables effortless vocabulary expansion at test time
by simply introducing novel class descriptions. Extending
this capability to dense prediction has become a prominent
focus in recent research, giving rise to the task of open-
vocabulary segmentation [15, 35].

While early approaches showed promise, recent open-
vocabulary segmentation models still lag significantly be-
hind their in-domain counterparts. Figure 1 illustrates
this gap for semantic (left) and panoptic segmentation
(right), showing the performance of open-vocabulary mod-
els trained on COCO [36] and evaluated on ADE20K [64],
alongside the closed-set Mask2Former [6] trained directly
on ADE20K (blue dashed line). Notably, the best models
trail the closed-set in-domain baseline by nearly 20 points.
Even more concerning is the apparent stagnation in open-
vocabulary performance, despite the task’s relatively recent
emergence and the high annotation costs of current train-
ing pipelines. In addition to relying on millions of image-
caption pairs, these methods train on more than 100,000
densely annotated images from COCO. In contrast, our ex-
periments demonstrate that in-domain models achieve com-
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parable performance with as few as 300 labeled images
from ADE20K (cf . Fig. 4). This suggests that current open-
vocabulary methods and setups share some underlying lim-
itations that prevent them from closing the gap.

In this paper, we investigate the root causes of the ex-
posed issue in the context of mask-transformer-based [6, 29,
51, 59] open-vocabulary segmentation methods [22, 60].
Our detailed analysis of top-performing methods identi-
fies key bottlenecks and uncovers several insightful find-
ings. We show that none of the core components in current
open-vocabulary methods are sufficiently effective: vision-
language models struggle with region-level classification,
and mask proposal generators often fail to provide adequate
segmentation. In fact, many valid masks are produced in-
ternally, but discarded during inference due to conflicting
training and testing objectives. These findings raise con-
cerns about the current training setup, where evaluation
goals are often infeasible given the supervision provided.
Finally, we outline research directions to address these is-
sues and propel open-vocabulary segmentation forward.

2. Related Work
Image segmentation. Early deep learning approaches
treated semantic and instance segmentation as separate
tasks. Seminal work in semantic segmentation adapted con-
volutional classification networks for dense prediction [38].
Subsequent work enhanced spatial details through atrous
convolutions [2], pyramidal pooling [63], and ladder-style
decoders [3, 26, 45]. On the other hand, instance seg-
mentation evolved from object detection pipelines [16, 17,
44], adding segmentation heads to produce per-instance
masks [19, 20]. Later, panoptic segmentation [24] unified
both tasks. Most prominent panoptic methods build on the
mask transformer framework [5, 6, 50], which represents a
unified architecture for all segmentation tasks.
Vision-language models. Contrastively pretrained vi-
sion–language models such as CLIP [43] and ALIGN [21]
are central to open-vocabulary segmentation. Trained on
large-scale data consisted of image–text pairs [4, 43, 46],
they learn to embed both modalities in a shared seman-
tic space, enabling direct cross-modal comparison. Sub-
sequent methods enhance CLIP in three key ways: they
introduce optimized classification [62] and spatial-aware
localization losses [25, 48]; refine the training proce-
dure [30, 31, 47, 61]; and curate higher-quality pre-training
data [14, 54]. OpenCLIP [7] trains CLIP from scratch
on the public LAION-5B dataset [46] and introduces Con-
vNeXt [37] backbones alongside standard ViTs [12].
Open-vocabulary segmentation. There are two main
paradigms for open-vocabulary segmentation: (i) training-
free [23, 27, 32, 49, 65] and (ii) training-based [11, 34,
40, 55, 58]. Training-free methods mostly rely on vision-
language models (such as CLIP) to make zero-shot predic-

tions. We focus on training-based approaches as they offer
better performance and enable instance-level recognition.
These approaches are further divided into (i) weakly super-
vised [1, 40, 55, 56] and (ii) fully supervised [8, 11, 18, 34,
53, 57, 58, 60], with the latter being more common. We fo-
cus on fully supervised methods, which train on COCO [36]
and evaluate on a broad suite of test benchmarks [9, 13,
42, 64]. Fully supervised open-vocab methods aim to learn
generic objectness from ground-truth annotations while re-
maining robust to the domain shift encountered at test-time.
Such methods fall into two groups according to the under-
lying segmentation model: (i) pixel/patch-based [8] and (ii)
mask-based [11, 22, 33, 34, 57, 60]. CAT-Seg [8] is the
most prominent pixel-based method; it refines pixel-level
cosine similarities between CLIP image and text embed-
dings through a cost-aggregation framework. Several sub-
sequent works [41, 48, 52] evaluate their vision–language
pretrained models within this CAT-Seg framework. Mask-
based approaches classify complete masks rather than indi-
vidual pixels or patches. Classification can operate in image
space via mask cropping [11, 34] or in feature space through
mask pooling [21, 33, 39, 57, 60]. We focus on mask-
based models, which represent the most general framework
as they support semantic, instance, and panoptic segmen-
tation. Specifically, we study two recent unified models,
FC-CLIP [60] and MAFT+[22], described in Section 3.

3. Preliminary
Task definition. Open-vocabulary segmentation aims to
partition an input image I ∈ RH×W×3 into a set of binary
masks with corresponding semantic labels:{

(Mi, ci)
}N

i=1
, Mi ∈ {0, 1}H×W . (1)

We denote by N the number of ground-truth segments in I,
and each segment is associated with a semantic label ci. An
open-vocabulary segmentation model is trained on a label
set Ctrain, whereas at inference time it may encounter pre-
viously unseen categories drawn from a test taxonomy Ctest
(i.e. Ctrain ̸= Ctest). We can split Ctest into seen Cseen = Ctest ∩
Ctrain and unseen semantic categories Cunseen = Ctest \ Ctrain.
We focus on standard setup with COCO as training (Ctrain)
and ADE20K as evaluation dataset (Ctest). A common ap-
proach in open-vocab segmentation encodes each class la-
bel as a CLIP-based text embedding and matches these em-
beddings against pixel- or region-level visual features.
Performance metrics. Our analysis emphasizes panoptic
segmentation as the most comprehensive segmentation task.
Hence, our primary metric is panoptic quality [24]:

PQ =

∑
(p,g)∈TP

IoU(p, g)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ 1

2
|FP|+ 1

2
|FN|︸ ︷︷ ︸

recognition quality (RQ)

. (2)
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Figure 2. Standard mask-based pipeline for open-vocabulary segmentation, as proposed in FC-CLIP [60] and MAFT+ [22]. At test time,
CLIP vision–text encoders supply aligned visual and textual features. A mask decoder, starting from N learnable embeddings, cross-
attends to the visual features to produce class-agnostic mask proposals. Masks tagged as no object are discarded; the rest are labeled by
ensembling a learned head (FC-CLIP) with a mask-pooled CLIP head. A panoptic inference then fuses masks and logits into the prediction.

Sets TP, FP, and FN denote the correctly matched pre-
diction–ground truth mask-segment pairs (true positives),
unmatched masks (false positives), and unmatched ground-
truth segments (false negatives), respectively. A predicted
mask p matches a ground-truth segment g if they share the
semantic class (cp = cg) and overlap with IoU(p, g) > 0.5.
We compute PQ (cf . Eq. 2) independently for each class and
report the mean across classes. We also report PQseen and
PQunseen as mean PQ over the corresponding class subsets.

Open-vocab methods: FC-CLIP [60] and MAFT+ [22].
Our analysis focuses on two prominent recent open-
vocabulary methods: FC-CLIP [60] and MAFT+ [22].
Both approaches follow the dominant paradigm in open-
vocab segmentation and pair CLIP [43] with a mask-
transformer [6]. Therefore, insights gained in this study
generalize to other approaches as well. The architecture
consists of three main components: i) a vision encoder that
extracts features, ii) a pixel decoder that upsamples these
features and iii) a mask decoder that generates mask pro-
posals and mask embeddings (cf . Fig. 2). The mask decoder
decouples segmentation into two distinct tasks: i) mask lo-
calization and ii) mask recognition. This design enables
seamless integration of CLIP-based recognition, supporting
the test-time goal of identifying unseen categories Cunseen in
open-vocabulary segmentation.

To this end, FC-CLIP and MAFT+ express mask-wide
classification using the similarity between mask-pooled vi-
sual CLIP features and textual CLIP embeddings of the tar-
get classes. This setup can recognize previously unseen cat-
egories, provided their textual descriptions are available at
test time. FC-CLIP [60] preserves vision–language align-
ment by freezing the CLIP encoders during training. In
contrast, MAFT+ [22] fine-tunes the CLIP vision encoder
but encourages the fine-tuned features to remain close to
the pre-trained ones by introducing an additional loss term.

We next outline components of FC-CLIP and MAFT+

most relevant to our analysis (cf . Fig. 2). Let VCLIP and
TCLIP denote the CLIP vision and text encoders. VCLIP
extracts features F ∈ RH′×W ′×D from the input image
I ∈ RH×W×3. The mask decoder starts with N learn-
able embeddings, attends them to the upsampled visual fea-
tures, and produces mask embeddings Emask ∈ RN×D and
pixel-to-mask scores Epixel ∈ RN×H×W . Applying a sig-
moid to Epixel yields the localization maps σ ∈ RN×H×W .
TCLIP generates text embeddings Et ∈ R|C|×D by encoding
a prompt such as "a photo of a [class]" for each
class in C. The textual embeddings Et act as a handcrafted
linear projection, that replaces the free weights in the stan-
dard M2F classifier. Note that an additional (|C| + 1)-
th learnable no-object embedding e∅ is appended to Et,
forming the extended embedding matrix E = [Et; e∅] ∈
R|C|+1×D. Mask-wide classification probabilities P ∈
RN×(C+1) are then obtained as Emask · E⊤ followed by
row-wise softmax. All masks classified as no-object are
discarded, which leaves N ′ class posteriors P′ ∈ RN ′×C

and the corresponding localization maps σ′ ∈ RN ′×H×W .
Note that e∅ is learned on the training set. This fact raises
concerns about the true openness of these methods, and will
be one of the main focuses of our analysis.

Another key component shared by FC-CLIP and
MAFT+ is the mask-pooling operator, which acts on the
dense CLIP features F ∈ RH′×W ′×D. Thresholding
the localization maps σ′ yields binarized masks M ∈
{0, 1}N ′×H×W , with Mi = Jσ′

i ≥ 0.5K. Given dense
CLIP features F and a binary mask Mi, mask pooling MP
produces a mask-aggregated visual embedding evi ∈ RD:

evi = MP (F,Mi) =

∑HW
r,c F[r, c, :] ·Mi[r, c]∑HW

r,c Mi[r, c]
. (3)

For each of the N ′ predicted masks, CLIP-based probabili-
ties can be computed by applying softmax (w/ the tempera-
ture τ ) to the cosine similarities between visual embedding
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evi ∈ RD and textual embeddings Et:

pi
CLIP = softmax([eTviet1 , e

T
viet2 , ..., e

T
viet|C| ], τ). (4)

As the distribution P′ is based on training categories, open-
vocab methods must incorporate the CLIP-based distribu-
tion PCLIP ∈ RN ′×D during inference to recognize Cunseen.
FC-CLIP distinguishes Cseen from Cunseen and ensembles the
in-vocabulary distribution P′ with the out-vocabulary dis-
tribution PCLIP. In contrast, MAFT+ inference relies solely
on PCLIP, yet obtained from the fine-tuned CLIP vision
encoder. Because mask pooling can bottleneck unseen-
class recognition capabilities, our analysis studies the upper
bounds of this operation.

4. Empirical Analysis and Findings
Panoptic segmentation requires both accurate segmentation
and correct classification to count a segment as a true pos-
itive. This requirement aligns naturally with mask trans-
formers, where mask proposal generation (segmentation) is
decoupled from the recognition (classification). This led
us to ask: how these two subtasks affect open-voc perfor-
mance by themselves? To investigate, we conduct a series
of experiments in which either the segmentation or classifi-
cation gets replaced with an oracle - an ideal component that
performs inference using ground truth information. These
oracle-based experiments quantify the upper bounds of cur-
rent open-voc methods, revealing how far we could push the
performance with perfect segmentation or classification.

4.1. Segmentation Oracle
We first examine CLIP’s upper bound as a zero-shot clas-
sifier with oracle mask generator. Our segmentation ora-
cle produces a set of perfect binary masks, one for each
panoptic segment. We use pre-trained CLIP encoders. We
extract dense image features in the shared vision-language
embedding space according to the MaskCLIP [65] strat-
egy for ViT backbones [12], while simply removing the
global average pool for ConvNeXt [37]. Then, we gather
per-mask representations by mask-pooling [57, 60] over the
extracted CLIP features. We embedd class names into the
common vector space with the CLIP text encoder. Finally,
we recover panoptic segmentation by assigning each mask
with the class whose text embedding yields the highest co-
sine similarity with the corresponding visual representation.
Figure 3 illustrates the described procedure.

Table 1 presents results for base (top) and large vari-
ants (bottom) of ConvNeXt and ViT models. We evaluate
three pre-trained ViT models: the original CLIP [43], Open-
CLIP [7] and SigLIP2 [48]. Each of these models is tested
on three resolutions: longer side 512, longer side 640, and
shorter side 800 with longer side capped at 1333 [60]. All
experiments interpolate the ViT positional embeddings to

Figure 3. We estimate CLIP’s out-vocab recognition ceiling us-
ing oracle masks. For each ADE20K validation image, we extract
CLIP features, pool them within the ground-truth class-agnostic
masks to obtain one embedding per mask, and compute cosine
similarities to the CLIP text embeddings of all ADE20K classes.

match the input resolution. The experiments reveal several
interesting insights, which we discuss next.

First, ConvNeXt-Large achieves the highest perfor-
mance among all evaluated models with 41.8 PQ. While im-
pressive for a zero-shot setup, it falls nearly 8 points short
of our in-domain Mask2Former model with the same back-
bone (Fig. 1). The gap is particularly striking given that the
vision-language models are evaluated with oracle segmen-
tation boundaries. These findings indicate that, despite re-
cent advances, current VLMs still lack the dense perception
required for accurate panoptic segmentation.

Second, when comparing peak performance, we find
that ConvNeXt still outperforms even the most recent ViT-
based model, SigLIP2. At lower input resolutions, the base
variants perform comparably, and SigLIP2-Large surpasses
ConvNeXt-Large. However, ConvNeXt benefits markedly
from the third input configuration which employs larger and
variable resolutions, while it degrades ViT models. De-
spite using training techniques that target dense prediction,
SigLIP2 cannot match convolutional backbones. It does,
however, achieve a substantial gain over earlier ViTs. This
result confirms the value of its enhanced training strategy.
The persistent gap suggests that ViTs still can not outper-
form the convolutional models at large resolutions.

Third, the performance is consistently lower on classes
from ADE20K\COCO (”unseen”) than on those from
ADE20K∩COCO (”seen”). This gap is unexpected as our
model has not received any training besides the CLIP pre-
training. The result suggests that the unseen subset in open-
voc segmentation experiments [60] is intrinsically harder.
A plausible explanation is class-frequency bias: classes an-
notated in both datasets are likely more common in natural
images, and VLMs may favor such frequent concepts.

Finally, we analyze the impact of capacity onto panop-
tic performance. ConvNeXt benefits from larger models
at higher input resolutions, while showing limited gains at
lower scales. In contrast, SigLIP2 demonstrates consistent
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Model Architecture Pre-training
Dataset

512×512 640×640 800×1333

PQall PQseen PQunseen PQall PQseen PQunseen PQall PQseen PQunseen

CLIP [43] ViT-B-16 @ 224 WIT [43] 27.0 36.2 20.2 26.3 35.4 19.5 19.6 28.7 12.8
OpenCLIP [7] ViT-B-16 @ 224 LAION-2B [46] 31.5 40.5 24.8 29.9 39.0 23.1 20.3 28.0 14.6
SigLIP 2 [48] ViT-B-16 @ 256 WebLI [4] 27.6 36.9 20.7 24.2 32.5 18.0 9.9 14.7 6.3
SigLIP 2 [48] ViT-B-16 @ 384 WebLI [4] 34.0 43.3 27.0 32.9 42.6 25.6 25.9 33.9 20.1
SigLIP 2 [48] ViT-B-16 @ 512 WebLI [4] 33.7 43.4 26.5 34.2 44.5 26.6 30.1 39.5 23.1
OpenCLIP [7] ConvNeXt-Base LAION-2B [46] 32.6 41.1 26.3 35.6 45.1 28.5 39.0 50.7 30.3

CLIP [43] ViT-L-14 @ 224 WIT [43] 12.5 19.3 7.4 13.4 19.8 8.6 13.1 20.8 7.4
OpenCLIP [7] ViT-L-14 @ 224 LAION-2B [46] 10.8 15.9 7.0 11.2 16.7 7.0 10.7 16.3 6.5
SigLIP 2 [48] ViT-L-16 @ 256 WebLI [4] 34.9 42.4 29.3 31.2 37.8 26.3 18.7 24.8 14.2
SigLIP 2 [48] ViT-L-16 @ 384 WebLI [4] 38.0 45.7 32.3 36.6 44.7 30.6 27.4 34.4 22.2
SigLIP 2 [48] ViT-L-16 @ 512 WebLI [4] 40.5 49.1 34.1 40.8 49.9 34.0 36.4 44.9 30.1
OpenCLIP [7] ConvNeXt-Large LAION-2B [46] 32.8 40.6 27.0 35.6 44.2 29.3 41.8 53.3 33.3

Table 1. Zero-shot panoptic quality (PQ) of dense CLIP features and our segmentation oracle on ADE20K val. We stratify classes on
ADE20K∩COCO (seen) and ADE20K\COCO (unseen) according to [60].

and significant improvements across all resolutions as ca-
pacity increases. Moreover, MaskCLIP appears to extract
unreliable dense features from ViT-L/14, which appears
consistent with prior per-patch segmentation results [28].

Finding 1: CLIP models struggle with region-level clas-
sification and fall short of in-domain baselines even when
provided with perfect segmentation.

4.2. Mask Classification Oracle
We now evaluate a classification oracle to assess the panop-
tic upper bound with the current mask proposals. Our oracle
adjusts the class posteriors of the final panoptic map for all
masks that overlap a ground truth segment with IoU > 0.5.

Table 2 presents the impact of oracle classification on
open-vocabulary panoptic performance. Both FC-CLIP
and MAFT+ show substantial gains of 13 PQ points over-
all when provided with perfect classification. Specifically,
PQseen increases by 8.0 and 8.8 PQ points, while we observe
a twofold improvement in PQunseen, 16.9 and 14.8 PQ points
for FC-CLIP and MAFT+ respectively. These improve-
ments confirm that recognition represents a major compo-
nent of the performance bottleneck. This is particularly the
case for unseen classes, which may indicate overfitting on
the training dataset. However, even with perfect classifica-

Model PQall PQseen PQunseen

FC-CLIP 26.8 39.5 17.3↰

+ oracle classification 39.8 47.5 34.2

MAFT+ 26.9 37.0 19.5↰

+ oracle classification 39.2 45.8 34.3

Table 2. Evaluating the impact of perfect mask classification on
open-vocabulary panoptic segmentation on COCO→ADE20K.

tion, the overall performance still falls short of typical in-
domain baselines. Note that this oracle can not correct mis-
takes caused by the insufficient overlap between predicted
and ground truth segments. This suggests that the remain-
ing limitations lie in the quality of the mask proposals.

Finding 2: Oracle classification improves open-voc per-
formance but still lags behind in-domain baselines, indi-
cating significant shortcomings in mask proposals.

4.3. Mask Selection Oracle
To better understand the root causes of the observed limi-
tations, we dive deeper into the mask proposal generation.
Our classification oracle operates only on the set of masks
included in the final panoptic prediction. However, before
the prediction is assembled, the mask decoder typically pro-
duces a much larger set of candidates consisting of up to
N = 250 masks. This raises a key question: is the mask
selection process that reduces this candidate set optimal?

To explore this, we conduct an experiment using an
oracle mask selection. Specifically, we apply Hungarian
matching between the ground truth masks and the full set
of candidate masks to identify those that best explain the
ground truth. The matching cost is computed using a
combination of binary cross-entropy and Dice loss. After
matching, we discard the unmatched candidate masks and
proceed with the standard panoptic inference [6]. Note that
this oracle is relatively non-intrusive, as it does not directly
alter classification or segmentation, but solely influences the
selection of masks from those already generated. Table 3
presents the results.

Surprisingly, oracle mask selection (cf . row 2) causes a
significant performance drop of 4.9 PQ points and 1.5 PQ
points for FC-CLIP and MAFT+. This leads us to visu-
ally inspect and compare regular predictions to those with
oracle mask selection. We notice that in some cases ora-
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Model PQall PQseen PQunseen

FC-CLIP 26.8 39.5 17.3↰

+ oracle mask selection 21.9 33.6 13.2↰

+ dropping ”no-object” logit 36.7 48.9 27.7

MAFT+ 26.9 37.0 17.4↰

+ oracle mask selection 25.4 35.7 17.6↰

+ dropping ”no-object” logit 33.7 42.6 27.1

Table 3. Evaluating the impact of oracle mask-selection on open-
vocabulary panoptic segmentation on COCO→ADE20K.

cle selection causes disappearance of correct masks due to
the filtering of masks with no-object posterior. Specifically,
if the classifier assigns the highest probability to the spe-
cial ”no-object” class, the corresponding mask is discarded
and excluded from the final panoptic segmentation. We
therefore modify the inference by removing the ”no-object”
logit, ensuring that all oracle-selected masks are included in
panoptic prediction. The third row of each section in Table 3
presents experiments with the modified selection oracle. We
observe a significant performance boost of 9.9 and 6.8 PQ
points for FC-CLIP and MAFT+. These findings are par-
ticularly compelling, as they suggest that open-vocabulary
models could achieve significant gains through more effec-
tive mask selection alone. The improvement is especially
notable on unseen classes, implying that the models inter-
nally often succeed in localizing these objects as well as
assigning a correct semantic category. This indicates that
many accurate masks get discarded due to poorly calibrated
no-object embedding or being eclipsed by other masks. We
present a more detailed analysis of this phenomena in 4.4.

Finding 3: Many valid mask proposals are discarded due
to the incorrect classification as no-object.

Table 4 extends the analysis of the mask-selection ora-
cle by pairing it with either oracle segmentation (row 2) or
oracle classification (row 3). The segmentation oracle uses
ground truth to fix the boundaries of the matched masks,
while retaining the mask classifications of the correspond-
ing open-voc segmentation model. We observe improve-
ments of 13.6 and 18.7 PQ points over the mask-selection
oracle for FC-CLIP and MAFT+, respectively. Notably, the
gains are larger for the seen classes, suggesting that the
models struggle more with classifying unseen categories.
Additional insights emerge when comparing these results
with those in Table 1, which also evaluates the segmenta-
tion oracle but in combination with the zero-shot VLMs.
We observe that both FC-CLIP and MAFT+ outperform the
best VLMs in presence of segmentation oracle. Interest-
ingly, they also achieve higher performance on the unseen
classes. This indicates that VLMs can benefit from ensem-
bling with a trained mask classifier (as in FC-CLIP) or from

fine-tuning of the visual backbone (as in MAFT+), even for
the recognition of classes not present in the training set.

The classification oracle extends the optimal mask selec-
tion by assigning correct one-hot class probabilities based
on the matching with ground truth segments. This oracle
raises the performance upper bound well beyond the in-
domain models. Specifically, FC-CLIP reaches 66.4 PQ,
while MAFT+ follows closely with 58.1 PQ. Interestingly,
performance on seen and unseen classes is comparable in
this setting. This supports our earlier observation that the
mask proposal generator tends to discard valid mask candi-
dates for unseen classes, and that the classifier particularly
struggles with these instances. The remaining performance
gap suggests that many ground truth segments still lack ap-
propriate corresponding masks, even with oracle mask se-
lection. Although the matching process identifies the opti-
mal candidate mask for each ground truth segment, it does
not guarantee sufficient overlap to ensure a correct match.

+ Oracle Seg. + Oracle Cls. PQall PQseen PQunseen

FC-CLIP w/ oracle mask selection
– – 36.7 48.9 27.7
✓ – 50.3 66.0 38.7
– ✓ 66.4 67.1 65.9

MAFT+ w/ oracle mask selection
– – 33.7 42.6 27.1
✓ – 52.4 63.0 44.4
– ✓ 58.1 59.8 56.8

Table 4. Evaluating the impact of oracle segmentation and classi-
fication on open-vocabulary performance on COCO→ADE20K.

Finding 4: Oracle mask proposal selection and oracle
mask classification boost performance well beyond in-
domain baselines, highlighting these two components as
the key limitations in current open-vocabulary models.

4.4. Comparisons with In-domain Models
We complete our analysis with a more detailed performance
comparison between open-vocabulary and in-domain mod-
els. Figure 4 aims to evaluate the generalization capabil-
ities of open-vocabulary models and assess the impact of
domain shift on their performance. Specifically, it presents
the in-domain performance of FC-CLIP when trained on
small subsets of ADE20K train and evaluated on ADE20K
val, both with (yellow) and without (blue) geometric ensem-
bling. For comparison, we also include the performance
of FC-CLIP (red) and MAFT+ (green) trained on the full
COCO training set. The results show that the in-domain
model matches the performance of open-vocabulary mod-
els using as few as 300 labeled images. With geometric
ensembling, it even surpasses them by 3 PQ points. These
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findings raise questions about the practical value of open-
vocabulary evaluation when comparable performance can
be achieved within a target domain at such a low annota-
tion cost. This suggests that current open-vocabulary mod-
els still struggle with domain shift. However, the domain
shift between COCO and ADE20K in terms of image ap-
pearance should not be particularly pronounced, as both
datasets are web-scraped from Flickr and similar sources.
Hence, we argue that there must be some sort of labeling
policy shift, which represents an insurmountable obstacle
for current open-vocabulary models.

Figure 4. Performance comparison of open-vocabulary mod-
els MAFT+ (green) and FC-CLIP (red) with in-domain models
trained on limited supervised data, evaluated either with (yellow)
or without (blue) geometric ensembling with CLIP predictions.

To examine this more closely, we identify classes where
the open-vocabulary model achieves a recall rate below
10%, and exhibits the largest drop in true positives com-
pared to the in-domain model. Table 5 lists top five such
classes, though many others are similarly affected. The ta-
ble also shows the number of true positive and false nega-
tive segments. We further distinguish between false nega-
tives caused by the absence of a predicted mask with suffi-
cient segmentation overlap (FNseg), and those where a cor-
rect mask was present but the predicted class was incorrect
(FNcls). We observe that the ratio of true positives to the
total number of ground truth segments (FN + TP) is negligi-
ble, indicating a near-complete failure in recognizing these
classes. The stratification of false negatives further reveals
that most of the errors arise from inadequate segmentation
rather than misclassification.

Manual inspection of COCO and ADE20K annotations
reveals labeling conflicts for all classes from Table 5. These
conflicts are illustrated in Figure 5. The first three columns
show ADE20K images overlaid with panoptic maps from
the ground truth, or predictions of FC-CLIP and MAFT+,
respectively. The final column presents COCO images with
overlaid panoptic maps that highlight the specific labeling
conflict illustrated in each row. For clarity, some classes
are omitted from the visualization. The first row illustrates
the discrepancy in labeling paintings on walls. In ADE20K,

FC-CLIP [60] MAFT+ [22]

class name FNseg FNcls TP FNseg FNcls TP

light 1213 27 0 1212 16 12
painting 708 38 40 756 20 10
cushion 458 16 8 472 7 3
sign 700 21 9 706 16 8
pillow 241 0 2 240 1 2

Table 5. Classes that suffer the most in transition between the in-
domain and open-vocabulary setups. We show true positives (TP),
and false negatives caused either by misssegmentation (FNseg) or
missclassification (FNcls).

paintings are labeled as a distinct thing class, painting,
picture, whereas in COCO, they are most often left unla-
beled or occasionally treated as part of the surrounding wall
segments. As a result, both FC-CLIP and MAFT+ fail to
recognize paintings in ADE20K. This failure stems from the
limitations of the mask proposal generator, which is trained
with a supervision that directly contradicts the evaluation
objectives. Specifically, since paintings are not labeled in
COCO, the model is never encouraged to generate masks
that cover painting regions. If such a mask is proposed by
chance, the model is trained to classify it as no-object.
Consequently, most of these masks are discarded before the
VLM even has an opportunity to classify them as paint-
ings. The second row considers the class pillow, which
is present in the taxonomies of both datasets. However,
COCO excludes sleeping pillows on beds and labels them as
part of the bed. On the other hand, ADE20K uses pillow
specifically for sleeping pillows and labels other types as
cushion. As a result, open-vocabulary models trained on
COCO fail to recognize bed pillows in ADE20K, as shown
in the first two rows. This example illustrates the ambi-
guity of class names and the necessity for more accurate
class descriptions in open-vocabulary segmentation. This
also highlights another limitation of current open-voc mod-
els: they struggle to recognize classes that are subparts of
training categories, as mask proposal generators are trained
to produce a single mask for the whole object. The third row
presents an example for the class signboard, sign,
which in ADE20K includes traffic signs. In contrast, COCO
provides a dedicated label only for stop signs, while the
other traffic signs are often left unlabeled or annotated as
part of surrounding objects, such as buildings. This incon-
sistency leads to similar recognition issues as before.

Finding 5: Annotation conflicts between COCO and
ADE20K reveal a misalignment between training su-
pervision and evaluation objectives, causing open-
vocabulary models to discard valid mask proposals.
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Figure 5. Illustration of labeling policy conflicts between COCO and ADE20K that hinder open-vocabulary model performance. The rows
illustrate labeling conflicts for classes painting, pillow, and traffic sign, respectively.

5. Conclusion

We have presented a comprehensive analysis of mask-
transformer methods for open-vocabulary segmentation.
Our oracle experiments identify the key bottlenecks in
both panoptic subtasks: mask classification and segmen-
tation. First, the current vision–language models struggle
with region-level classification: even with perfect masks,
they lag behind in-domain performance. This gap under-
scores the need for better VLM pre-training pipelines to
enhance their dense representations. Second, our analysis
shows that even with oracle classification, prominent open-
vocabulary approaches still lag behind in-domain models,
revealing shortcomings in mask proposal generation. Third,
we demonstrate that mask proposal generators internally
produce valid proposals, yet discard them at inference due
to biases inherited from the training data. These biases pre-
vent them from reconciling labeling-policy discrepancies
between training and evaluation datasets.

The identified bottlenecks suggest several promising re-
search directions. First, future work should eliminate the
taxonomy conflicts by unifying or precisely mapping label
sets in benchmark design to ensure fair and reliable eval-
uation of open-vocabulary performance. Second, current

proposal generators lack vocabulary awareness: they gen-
erate the same mask candidates regardless of the test-time
taxonomy. Future work should develop vocabulary-aware
proposal generators that dynamically adapt mask bound-
aries to the evaluation vocabulary. Finally, we argue that
richer annotation guidance is essential and can be achieved
in two ways: i) in a few-shot setting, by providing exem-
plar segmentations that illustrate the desired outputs, and ii)
by supplying detailed textual guidelines that define annota-
tion rules for each semantic category. The latter approach
appears more feasible, as articulating annotation guidelines
in natural language tends to be easier than collecting exam-
ples that cover every edge case. However, language-based
approach could be limited because the current CLIP text en-
coders operate largely as a bag-of-words. Replacing these
encoders with large language models could capture finer
class distinctions, but only if the vision encoders can match
such subtle differences. We believe these directions offer a
roadmap toward more open open-vocab segmentation.
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