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Abstract

This paper introduces Audio-Visual LLM, a novel Multi-
modal Large Language Model designed for holistic video
understanding through integrated visual and auditory in-
puts. Our work innovates with a modality-augmented train-
ing approach, using uniquely designed modality-specific to-
kens to selectively activate the corresponding visual and au-
ditory encoders. This mechanism is pivotal in efficient end-
to-end training across diverse video data modalities, en-
compassing visual-only, audio-only, and combined audio-
visual content. Additionally, we introduce a high-quality
video instruction dataset, characterized by its robust tempo-
ral audio-visual correlations, which facilitates the model’s
adept handling of a wide range of audio-visual tasks, from
nuanced audio-visual narratives to intricate reasoning. Ex-
tensive experiments demonstrate impressive zero-shot per-
formance in various video understanding tasks, such as
question answering, captioning, and complex reasoning,
underscoring its potential in video understanding.

1. Introduction

Videos are inherently multimodal, encapsulating both au-
ditory and visual information. This multi-modality is not
just an inherent characteristic of videos but also a funda-
mental aspect of how humans perceive and interact with
visual media. For example, in a cinematic context, si-
multaneous engagement with visual imagery and auditory
cues significantly enriches the viewing experience, enhanc-
ing both comprehension and enjoyment. Recent develop-
ments in multimodal models [20, 22, 28, 39] highlight this
by focusing on the integration of visual and auditory in-
puts, thus capturing a more comprehensive representation
of video content.

Meanwhile, large language models (LLMs) [3, 5, 43]
have shown remarkable capabilities in intent understand-
ing and instruction following. They can interact well with
human intentions and offer tailored responses. Building
upon this, subsequent research [2, 17, 25] have augmented
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Figure 1. Audio-Visual LLM achieves advantageous performance
on various video understanding tasks and consistently outperforms
existing methods.

LLMs with visual perception abilities, introducing align-
ment mechanisms and curating datasets geared towards
instruction-following in visual domains, including both im-
age (e.g., MiniGPT-4 [55], LLaVA [30]) and video un-
derstanding (e.g., Qwen-VL [4], VALLEY [31], Video-
ChatGPT [33]). Despite these advancements, most endeav-
ors have predominantly focused on visual data, overlooking
the rich auditory data inherent in videos. This oversight
suggests a significant opportunity for enhancing video un-
derstanding by fully harnessing the auditory component, a
gap our work aims to bridge by integrating comprehensive
auditory data processing within the LLM framework.

To bridge this gap, recent works [32, 40, 52] have be-
gun to jointly incorporate visual and audio components into
LLMSs to improve their video understanding ability. How-
ever, these existing models still exhibit limitations. For ex-
ample, Video-LLaMA’s [52] reliance on the pre-trained Im-
ageBind model [16] for audio signal representation may re-
strict its capacity to capture the full depth of audio-visual
interactions. Similarly, MacawLLM [32] and OneLLM [ 18]
adopt visual and audio signals extracted from videos of dif-
ferent sources, which may induce bias and instability in
training. These observations highlight a substantial oppor-



tunity for improvement in aligning audio-visual modalities,
both in terms of model architecture and dataset develop-
ment.

To this end, we propose a multimodal LLM framework
that synergistically aligns visual and audio signals for holis-
tic video understanding. This framework presents two main
innovations. Firstly, we introduce a modality augmentation
technique within the Audio-Visual LLM training process.
This technique employs modality-specific tokens to trigger
the relevant visual or auditory encoders depending on the
input type, thereby facilitating exploration of the nuanced
interplay between audio and visual components in videos.
This selective activation is also pivotal in enabling end-to-
end joint training, promoting dynamic merging of audio and
visual elements in video content. Secondly, we introduce a
GPT-assisted pipeline to curate visual/audio-text pairs into
the appropriate and diverse instruction-following format,
using GPT-4 [40], to improve the training of Audio-Visual
LLM. Our focus during curation is to maintain audio-visual
temporal consistency while minimizing hallucinations. We
craft audio-visual descriptions with strong temporal associ-
ations and design intricate prompts to guide GPT-4 in curat-
ing diverse instruction data with less hallucination.

Extensive experiments demonstrate that our Audio-
Visual LLM achieves superior zero-shot performance on
a range of video understanding tasks. Notably, our model
achieves an accuracy of 60.4% in MSRVTT-QA, 50.6% in
ActivityNet-QA, and 47.9% in MUSIC-AVQA in question-
answering tasks. In captioning task, it attains a CIDEr score
of 51.4% on VATEX-CAP and 30.3% on VALOR-CAP.
Furthermore, in complex reasoning tasks, Audio-Visual
LLM demonstrates its prowess with a accuracy of 59. 7% in
NExT-QA and a score of 26. 1% BLEU-1 in FAVDBench.
These results not only surpass the performance of existing
LLM-based models, such as Video-LLaMA [52] but also
outperform conventional models like InterVideo [46], un-
derscoring the superior effectiveness and innovation of our
method in video understanding.

2. Related Works
2.1. Large Language Models for Video

Inspired by the strong instruction-following ability of
LLMs [3, 35, 43] recent researches have extended these
models to understand multimodal content, focusing partic-
ularly on images [4, 30] and videos [29, 31, 33]. They typ-
ically focus on designing multimodal projection layers to
align with LLMs. LLaVA [30] and MiniGPT4 [55] con-
nect images to LLM with learnable projectors, using im-
age instruction datasets curated via GPT-4. Valley [31] and
Video-LLaVA [29] extend it to unify images and videos into
LLMs. Recently, some studies such as Video-LLaMA [52],
MacawLLM [32], and OneLLM [18] have understood vi-
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sual and audio content within videos. Despite these ef-
forts, they usually concentrate on single-modal interpreta-
tion in videos, with the intricate alignment between visual
and auditory modalities being relatively unexplored. To ad-
dress this gap, we introduce a modality-augmented training
paradigm aimed at thoroughly exploring the alignment be-
tween visual and audio modalities.

2.2. Video Instruction Datasets

A high-quality instruction dataset [3, 14, 42, 43] is cru-
cial for LLMs and has been extended to the vision do-
main. Most works [10, 21, 30, 53] leverage GPT to cu-
rate the instruction-response pair based on the textural de-
scription of vision content. For instance, LLaVA [30] and
GPT4Rol [53] use text annotations such as captions and
detection boxes of images to generate multi-turn conver-
sations, Complex VQA, and detail descriptions for visual
instruction tuning. Recently, some works have explored
the GPT-based curation of video instruction datasets. Val-
ley [31] and VideoChat [26] sequentially input dense cap-
tions to GPT in the temporal order. Despite the inherent
challenges in comprehending individual frames, the audio
information is also lost. We propose an automatic audio-
visual instruction curation pipeline that incorporates both
visual and audio signals within videos.

3. Method

In this section, we first introduce the overall architecture of
our Audio-Visual LLM as shown in Figure 2. Secondly,
we propose a modality-augmented training strategy to im-
prove audio-visual alignment. Lastly, we curate a high-
quality instruction dataset of visual-only, audio-only, and
joint audio-visual content as shown in Figure 3, facilitating
the modality-augmented training.

3.1. Model Architecture

Our model consists of three components: the multimodal
encoders, the linear projectors, and the large language
model, as illustrated in Figure 2.

Multimodal Encoders. Given a video, we first decom-
pose it into individual video frames F' € RT>*H*Wx3 anqd
audio segments A € RX*M where T denotes the num-
ber of frames and K denotes the number of audio seg-
ments. Each video frame is further segmented into N
non-overlapping patches, creating spatio-temporal patches
V € RTXNXPXPxC yith P indicating the patch size. For
frame-level processing, we employ CLIP [36] to encode
each frame into embeddings £, € RT*N*XDP  To adapt
these embeddings for longer video sequences, we introduce
a novel approach that enhances flexibility. We aggregate the
[CLS] token from each frame’s embedding to compile the
temporal tokens E; € RT*P¢ where Dy is the dimension
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Figure 2. The framework of our method consists of three components: multimodal encoders, linear projections, and LLM. We pre-train the
projections in the pre-training stage and fine-tune both the projections and LLM in the supervised-finetuning stage. Both stages freeze the

multimodal encoders.

of these tokens. Concurrently, we average the patch em-
beddings across the temporal axis to generate spatial tokens
E, € RNXDs with D, as their dimensional size. This strat-
egy reduces the overall sequence length fed into the LLMs
to T'+ N, streamlining the input while preserving essential
spatiotemporal information, as shown below:

Ey = {Uilm 7UZZS}7

E, = {o', 0%, 3%, ..., oV }.

(1
2

For audio segments, we employ CLAP [47] to derive the
audio embeddings by capturing the last hidden state, which
reflects the semantic content of the audio. This process dis-
tills the essential auditory information into a compact form,
represented as £, € RX*Pe where D, denotes the dimen-
sion of the embeddings for each audio segment, as shown
below:

2
Velgs +ee

3

E,={a',a?d%, ...,a"}. 3)

Linear Projectors. To align with the LLM’s embedding di-
mension D;, we incorporate linear projection layers to nor-
malize the dimensions of temporal tokens E; € RT*Pt,
spatial tokens E, € RY*Ps and auditory tokens E, €
RE&*Da  Linear transformations are applied to each token
type through specific weight matrices W and bias vectors
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b, facilitating their integration into the LLM framework as
follows:

Hy = WiE; + by,

H s — W‘;Es + b87

H,=W,E, + b,.

These transformations result in the final video token rep-

resentation H, € R(THN+HK)XDi comprising T' temporal
tokens (H;), N spatial tokens (H), and K auditory tokens
(Ha).
Large Language Model. Our methodology utilizes the Vi-
cuna model, an open-source LLM that has been fine-tuned
on the LLaMA [43], using a diverse dataset of approxi-
mately 70,000 dialogues from ShareGPT. To interpret video
content. We integrate instruction tokens I with the video to-
kens H,, and this composite input is processed by Vicuna.
This setup facilitates the generation of textual responses R
by the LLM, ensuring relevance and coherence with the
video’s context, as depicted in the following equation:

“)

R =LLM(H,,I).
3.2. GPT-Assisted Data Curation

In this section, we introduce a GPT-assisted data curation
approach as illustrated in 3. The primary focus in the
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Figure 3. The framework for GPT-assisted automated data curation consists of three key steps. 1) we employ pre-trained visual and audio
models to extract frame-level and segment-level captions, followed by using GPT-4 to fuse them into temporally coherent video and audio
captions, ultimately combining them into a comprehensive audiovisual caption; 2) based on the audio-visual captions, we construct data
generation templates, prompting GPT-4 to create a diverse dataset of multimodal instruction data. 3) we design various verification criteria

to filter the high-quality instruction data.

curation is to maintain audio-visual temporal consistency
while minimizing hallucinations. We utilize GPT-4 [35] and
pre-trained models [24, 34] to generate audio-visual cap-
tions with strong temporal associations and design intricate
prompts to guide GPT-4 to curate diverse instruction data
with less hallucination based on the captions. Detailed ex-
planations are shown below.

Audio-visual captions generation. For our selection of
the datasets, we use ACAV100M [19] and VGGSound [8],
recognized for their high-quality synchronization of audio
and visual content. This choice guarantees that the audio
and visual elements in each video align correctly over time,
allowing us to produce sequential captions for both video
frames and audio slices. We use BLIP to create captions
at the frame level, denoted V., = {v},vZ ..., 0T}, and we
use HTSAT [34] to generate captions for audio segments,
denoted A, = {al,a?,...,a}. Following this, we employ
GPT-4 to fusion them into video and audio captions that are
temporally coherent, and ultimately combine them into a
comprehensive and consistent audio-visual caption.

Instruction Type | Audio Visual Aud-Vis | Total
Audio-visual Descriptions | 20k 50k 30k | 100k
Multi-Turn Conversations | 20k 60k 40k 120k
Complex Reasoning 5k 20k 15k 40k

Table 1. The distribution of the instruction dataset. We gener-
ate various instruction types including multi-turn conversations,
audio-visual descriptions, and complex reasoning. We also cover
various video data types, including audio, visual, and audio-visual.
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Audio-visual instruction dataset generation. We intro-
duce a systematic prompting framework designed to derive
varied instruction-following data from audio-visual cap-
tions. Leveraging GPT-4 for data creation, our framework
comprises four main elements: ROLE, defining the task at
hand; REQUIREMENT, specifying the guidelines for for-
mulating instructions with a focus on high-quality and di-
verse questions; EXAMPLE, offering an in-context exam-
ple; and CONTEXT, where the generated audio-visual cap-
tions serve as the foundation for data production. Through
this comprehensive approach, we aim to produce a rich and
diverse dataset of instruction data that enhances the perfor-
mance of models in understanding and responding to com-
plex queries related to audio-visual content.

Automatic verification. To ensure the generated instruc-
tion question-answer pairs are relevant, coherent, and use-
ful, we employ a systematic filter process based on sev-
eral key criteria. First, we assess semantic relevance, en-
suring that the generated data aligns closely with the origi-
nal audio-visual captions. Next, we evaluate the complete-
ness of the information, confirming that the instruction data
comprehensively covers the essential aspects of the audio-
visual content. We also consider logical soundness, veri-
fying that the instructions provide coherent and meaningful
guidance. Additionally, we emphasize linguistic fluency,
ensuring that the text is grammatically correct and clearly
articulated. Finally, we prioritize diversity, filtering out re-
dundant or repetitive entries to promote a rich variety of in-
struction data. Through this systematic filtering approach,
we successfully identify and retain only high-quality in-
struction data that meet our established standards. As illus-



trated in Table 1, we generate a total of 260,000 instruction
data pairs from a combination of audio, visual, and audio-
visual instances, including 100,000 comprehensive audio-
visual descriptions, 120,000 multi-turn conversations, and
40,000 complex reasoning cases.

3.3. Modality-Augmented Training

Video inherently contains visual signals, audio signals, and
combined audio-visual signals. We propose a novel training
paradigm known as Modality-Augmented Training (MAT),
which enables the simultaneous training of three types of
modalities: visual-only, audio-only, and joint audio-visual
samples within a single batch. This approach allows our
model to simultaneously consider multiple perspectives of
the video, facilitating a more comprehensive understanding.

System: Xprompt \N

Human: XY nstruction
Human: X%instruction
Human: X3;nstruction

\n Assistant: X nesponse \N
\n Assistant: X2response \N
\n Assistant: X3response \N

Figure 4. Data format for modality-augmented training.

As illustrated in Figure 4, we structure the data as a
multi-turn conversation instruction format. Sy stem refers
to the system message Xprompt that outlines the role and
expected operation of LLMs, and we set it as A chat be-
tween a curious human and a video assistant.”. Human rep-
resents the instruction, which includes a modality-specific
token <MOD> € {<VIS>, <AUD>, <AUD_VIS>} that indi-
cates the modality being employed; this token is replaced
with the embedding extracted from the corresponding en-
coder. Assistant denotes the text response X,csponse OF
the model.

The training process is structured into two distinct
phases. In the initial phase, we focus on crafting gen-
eral audio-visual descriptions for pre-training, during which
only the projectors are updated. This phase allows the
model to learn effective representations from audio-visual
captions. The second phase shifts to generating detailed
responses for multi-turn dialogues and complex reason-
ing tasks, where both the LLMs and projectors are jointly
fine-tuned. In this phase, we incorporate modality-specific
tokens <MOD> to specify the input modality within the
prompts, helping the model to distinguish between various
sources of modality. The training objective is formulated
using a cross-entropy loss that focuses on the response se-
quence Y, represented as follows:

T

L= - log P(ys|y<s, <MOD>, z)
t=1

(6)

where P(y¢|y<t, <MOD>), z denotes the probability of gen-
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erating the token y; given all prior tokens y;, the modality
token <MOD> and the input . This structured approach en-
sures effective learning from both general audio-visual con-
texts and complex instruction data, ultimately enhancing the
model’s understanding and performance.

4. Experiment

In this section, we first introduce the experimental setup and
implementation details. We then describe the downstream
tasks for which our method is evaluated and report strong
results and ablation studies.

4.1. Experimental Setup

Model Settings. We build the visual encoder with ViT-
L/14 [13], which is a transformer-based model composed
of 24 layers of blocks, with a patch size of 14. We initial-
ize it from the pre-trained CLIP [36] version via contrastive
learning. Similarly, we build the audio encoder with HT-
SAT [9], which is also a transformer-based model with 4
groups of swin transformer blocks. We initialize it from
the pre-trained CLAP [47] via contrastive learning. We use
fully connected layers as linear projectors to convert spa-
tial, temporal, and audio tokens to the LLM with a dimen-
sion of 4096. We build our LLM with Vicuna-v1.5 7B [12],
which is an effective chat version that has been fine-tuned
on LLaMA [43].

Training Datasets. We curate 260k video instruction data
including 100k detailed descriptions and 160k complex in-
structions. We also use 650k image data from LLaVA, and
770k video data from Valley to enhance the shared spatio-
temporal perception and reasoning capacity.

Implementation Details. We resize the videos to a reso-
lution of 224224 and uniformly sample 32 frames during
training. We evenly divide the audio signals into 4 segments
and sample each segment at a sampling rate of 48Khz. We
treat images as 1-frame videos so that we can jointly train
images and videos in a unified manner. We adopt FlashAt-
tention and Deepspeed ZeRO for efficient training. We use
the AdamW optimizer with § = (0.9,0.98). A cosine an-
nealing learning rate schedule is applied with a warm-up
ratio of 0.03. The training is conducted on 8 x A100 GPUs
with 80GB GPU memory. During the pre-training stage, we
freeze the encoders and LLM, while only training the pro-
jectors. The learning rate is set to 2e-3. We use a total batch
size of 256 and set the training epoch of 3, taking approx-
imately 16 hours. During the instruction fine-tuning stage,
we only freeze the encoders and jointly train the linear pro-
jectors and LLM. The learning rate is set to 2e-5. We use a
total batch size of 128 and set the training epoch of 1, taking
approximately 10 hours.



Method | MSRVIT-QA  MSVD-QA

ActivityNet-QA  AVSD

AVSSD  MUSIC-AVQA

JustAsk [50] 41.5 46.3 38.9 - - -
VALOR* [11] 46.7 56.4 44.8 - - 76.6
FrozenBilLM [51] 47.0 54.8 43.2 - - -
InterVideo [46] 47.1 55.5 - - - -
LLaMA-Adapter [15] 43.8 54.9 34.2 - - -
VideoChat [26] 45.0 56.3 26.5 - - -
Valley [31] 45.7 65.4 42.9 - - -
Video-ChatGPT [33] 49.3 64.9 35.2 - - -
Video-LLaVA [29] 59.2 70.7 45.3 - - -
MacawLLM [32] 25.5 42.1 14.5 343 36.2 31.8
ChatBridge [54] - 453 - - - 43.0
OnelLLM [18] - 56.5 - - - 47.6
Video-LLaMA [52] 54.9 65.0 45.8 36.7 40.8 36.6
PandaGPT [40] 23.7 46.7 11.2 26.1 32.7 33.7
FAVOR* [41] - - - 51.2 50.5 -
Ours 60.4 72.1 50.6 534 48.3 47.9

Table 2. Zero-shot evaluation of state-of-the-art methods on video question-answering (MSRVTT-QA, MSVD-QA, and ActivityNet-QA)
and audio-visual question-answering (AVSD, AVSSD, and MUSIC-AVQA). VALOR™* and FAVOR™ are evaluated via finetuning.

Method ‘ VATEX-CAP VALOR-CAP AVSD-COMP
ChatBridge 48.9 24.7 75.4
OneLLM 43.8 29.2 74.5
Ours 514 30.3 76.8

Table 3. Zero-shot evaluation of state-of-the-art methods on video
captioning tasks (VATEX-CAP) and audio-visual captioning tasks
(VALOR-CAP and AVSD-COMP).

Method ‘ NExT-QA MVBench FAVDBench
Video-LLaMA 22.5 34.1 20.8/15.0
FAVOR 425 29.2 249/14.8
Ours 59.7 44.6 26.1/15.8

Table 4. Zero-shot evaluation of state-of-the-art methods on com-
plex reasoning tasks (NExT-QA, MVBench, and FAVDBench).

4.2. Results

Downstream Tasks and Datasets We explore our method
across a range of video-related tasks, including question-
answering (video QA and audio-visual QA), captioning
(video captioning and audio-visual captioning), and com-
plex audio-visual reasoning, demonstrating its capability in
holistic video understanding. Unless stated otherwise, we
report top-1 accuracy [33] on QA tasks and CIDEr [44] on
captioning tasks.

Question-answering. As shown in Table 2, we evaluate
across various video QA tasks (MSRVTT [49], MSVD [7],
and ActivityNet [6]) and audio-visual QA tasks (AVSD [1],
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AVSSD [8], MUSIC-AVQA [23]). Our method yields su-
perior performance across these benchmarks over previous
methodologies, indicating a more nuanced audio-visual un-
derstanding.

For video QA, by integrating audio with visual infor-
mation, our model achieves notable accuracy improve-
ments: +1.2% on MSRVTT-QA, +1.5% on MSVD-QA and
+4.8% on ActivityNet-QA. The significant improvement on
ActivityNet-QA, with its longer video length, highlights our
model’s strength in processing long-duration audio-visual
content. For audio-visual QA, our curation of instruc-
tion datasets with high audio-visual consistency enables
more effective modality-augmented training. This approach
yields substantial accuracy improvements over the state-of-
the-art: +15.9% on AVSD, +7.5% on AVSSD, and +0.3%
on MUSIC-AVQA, demonstrating the model’s superior ca-
pability in comprehensive audio-visual alignment.

Captioning. As shown in Table 3, we evaluate across video
captioning (VATEX-CAP [45]) and audio-visual captioning
(VALOR-CAP [11] and AVSD-COMP [1]). By develop-
ing captions that are both contextually rich and temporally
aligned with the corresponding audio-visual content, we
achieve a more effective modality-augmented training pro-
cess. This nuanced approach to synchronizing video and au-
dio elements results in notable CIDEr score enhancements
over the state-of-the-art: we observe increases of +2.5%
on VATEX-CAP, +1.1% on VALOR-CAP, and +1.4% on
AVSD-COMP. These results underscore our model’s adept-
ness in capturing and expressing the intricate dynamics of
audio-visual information.



Complex Reasoning. As shown in Table 4, we ex-
tend our evaluation to include intricate question-answering
(NExT-QA [48]), comprehensive video understanding
(MVBench [27]), and detailed audio-visual descriptions
(FAVDBench [38]). Our model outperformed the state-
of-the-art, achieving a +2.4% accuracy increase on NExT-
QA [48], +10.5% on MVBench [27], and +5.3% BLEU-1
on FAVDBench [38]. These gains highlight our model’s ef-
fectiveness in intricate audio-visual understanding.

4.3. Ablation Studies

In this section, we investigate the effects of various de-
sign choices including training strategy, modality integra-
tion, model size, and sequence length. Our standard con-
figuration employs a ViT/L-14 for visual encoding, HTSAT
for auditory processing, and Vicuna-7B as the foundational
LLM architecture. For both training and inference phases,
videos are segmented into 32 frames coupled with 4 audio
segments.

Training Strategy. We explore the influence of training
strategy on the understanding of video content through ab-
lation experiments on video QA and audio-visual QA tasks.
Specifically, we evaluate our Modality-Augmented Train-
ing (MAT) against two alternative strategies: PT1, which
combines visual and audio data training initially and then
separates them, and PT2, which starts with separate train-
ing and then merges the modalities

Table 5 shows that MAT significantly outperforms the al-
ternatives, with improvements of +2.1% on MSRVTT-QA
and +3.2% on AVSSD. This confirms the effectiveness of
MAT in enhancing audio-visual comprehension. Addition-
ally, the lower performance of PT1 suggests that isolated
training of visual and audio data can lead to misalignment,
emphasizing the value of integrated modality training.
Modality Integration. In assessing the impact of integrat-
ing both visual and audio modalities for video understand-
ing, We conduct ablation studies on video QA and audio-
visual QA tasks, comparing the performance when using
both audio-visual inputs to visual-only inputs during infer-
ence.

As shown in Figure 5, incorporating visual and audio
modalities, rather than utilizing only the visual modal-
ity, leads to a significant improvement, such as +1.7% on
MSRVTT-QA and +12.1% on AVSSD. This underscores
the critical role of audio-visual integration in achieving
a holistic understanding of video content. Notably, even
video QA tasks, traditionally reliant on visual data alone,
show marked improvement with audio input, highlighting
audio’s essential contribution to interpreting video.

Size of Model Architecture. The size of the model archi-
tecture critically impacts performance. Our baseline setup
employs ViT-L/14 (CLIP) as the visual encoder, HTSAT
(CLAP) for audio input, and Vicuna-7B (LLaMA) for lan-
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Method‘MSRVTT-QA ActivityNet-QA AVSSD MUSIC-AVQA

PT1 56.7 453 43.6 43.5
PT2 583 48.1 45.1 45.4
MAT 60.4 50.6 48.3 47.9

Table 5. Ablation experiments on the training strategy. We report
comparison results between modality-augmented training (MAT)
versus plain training of two versions: PT1 and PT2.

VisEnc ‘MSRVTT—QA ActivityNet-QA AVSSD MUSIC-AVQA

ViT-B/16 58.9 48.2 46.7 46.3
ViT-L/14 60.4 50.6 48.3 479
ViT-H/14 60.9 512 49.0 48.4

Table 6. Ablation experiments on scaling visual encoders. We
report results among ViT-B/16, ViT-L/14, and ViT-H/14.

AudEnc ‘MSRVTT-QA ActivityNet-QA AVSSD MUSIC-AVQA

W-Tiny 58.5 48.4 454 45.7
W-Base 59.3 49.8 47.8 48.2
W-Small 60.7 51.3 49.1 48.7

Table 7. Ablation experiments on scaling audio encoders. We
report results among Whisper-Tiny, Base, and Small.

LLM ‘MSRVTT—QA ActivityNet-QA AVSSD MUSIC-AVQA

V-7B 60.4 50.6 48.3 479
V-13B 61.5 51.9 50.4 49.3

Table 8. Ablation experiments on scaling LLMs. We report results
between Vicuna-7B and Vicuna-13B.

guage processing. To explore scalability, we experimented
with various sizes for these components, replacing HTSAT
with different versions of Whisper [37] due to the size re-
strictions of HTSAT.

The results, detailed from visual encoder scaling in Table
6 to LLM scaling in Table 8, indicate that larger models lead
to better results. Notably, we obverse a +1.5% improvement
in MSRVTT-QA when upgrading from ViT-B/16 to ViT-
L/14, a +0.8% improvement when switching from Whisper-
Tiny to Whisper-Base, and a +1.1% increase from Vicuna-
7B to Vicuna-13B. These results highlight the importance
of combining sophisticated multimodal encoders, which en-
able detailed perception, with robust LLMs, which support
intricate reasoning, to improve video understanding.

Evaluation on Multiple Dimensions. The initial assess-
ment is centered on a single aspect, such as accuracy. To
comprehensively assess the effectiveness of our approach,
we adopt the methodology from Video-ChatGPT and uti-
lize GPT-4 to rate various dimensions in videos on a scale
of 1 to 5: information accuracy (Correct), attention to detail
(Detail), contextual grasp (Context), understanding of tem-
poral elements (Temporal), and consistency. The notable
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Figure 5. Ablation experiments on integrating video modalities for
video understanding. We report the comparison results on video
QA and audio-visual QA between joint audio-visual modalities
versus only the visual modality.

advancement shown in Table 9 highlights the comprehen-
sive understanding of our method of video content.

Method ‘Correct Detail Context Temporal Consistency
LLaMA-Adapter| 2.03 232 2.30 1.98 2.15
Video-LLaMA 196 2.18 2.16 1.82 1.79
VideoChat 223 250 253 1.94 2.24
Video-ChatGPT | 2.40 252 2.62 1.98 2.37
Valley 243 213 286 2.04 2.45
Ours 256 247 293 2.17 2.51

Table 9. Evaluation on multiple dimensions for video understand-
ing. We follow Video-ChatGPT to report score results (1~5) on
correct, detail, context, temporal, and consistency.

Length of Sequence. In video, each frame encapsulates
instantaneous visual data while audio segments capture
transient auditory information. Increasing the number of
frames and audio segments enhances contextual detail ex-
traction, thereby improving the LLM’s capacity for holistic
video comprehension. Our baseline configuration employs
32 video frames and 4 audio segments. To investigate the
impact of sequence length, we perform ablation studies on
video frames (testing lengths in 4, 8, 16, 32, 64) and audio
segments (testing lengths in 1, 2, 4, 8, 16).

As demonstrated in Fig. 6 to Fig. 7 across video QA
benchmarks with varying durations—MSRVTT-QA (15s)
and ActivityNet-QA (180s)—accuracy improvements cor-
relate with sequence length expansion, though marginal
gains diminish progressively. Specifically, video frame
scaling yields significant improvements up to 32 frames,
while audio segments plateau near 4 units. This phe-
nomenon suggests that while extended sequences enrich
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Figure 6. Ablation experiments on lengths of video frames. We
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Figure 7. Ablation experiments on lengths of audio segments. We
report results on audio segments of length 1, 2, 4, 8, and 16.

temporal context, inherent redundancy in continuous video
data ultimately constrains further performance enhance-
ment. Future research directions should prioritize de-
veloping modules that optimize the trade-off between in-
formation sufficiency and computational efficiency, po-
tentially through intelligent redundancy reduction mecha-
nisms. Such advancements would enable LLMs to dynam-
ically focus on semantically critical frames and audio seg-
ments while minimizing processing overhead from redun-
dant content.

5. Conclusion

We introduce Audio-Visual LLM, a multimodal framework
that empowers LLM with video instruction-following
capability.  The modality-augmented training plays a
crucial role in enabling end-to-end joint training with video
data across different modalities, including visual-only,
audio-only, and audio-visual formats. Additionally, we
present a high-quality video instruction dataset with
strong audio-visual associations, derived from GPT-4,
which enables our model to effectively process a wide
range of task-oriented video instructions, spanning from
multi-turn  conversations and audio-visual narratives
to complex reasoning tasks.  Extensive experiments
demonstrate the impressive performance of Audio-
Visual LLM across diverse video understanding tasks.
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