
CobraVPS: Code Template Optimization for Better Question Reasoning
Accuracy with Visual Program Synthesis

Supplementary Material

1. Pesudo-code Template Examples
In this section, we show several code examples in differ-
ent code templates for a given query class. We use query
types relVerifyCr and chooseAttr as examples in Fig. 1(a)
and Fig. 1(b), respectively. For the query class relVerifyCr,
the query involves questions about the relative positions of
two target objects, while the other query class chooseAttr
consists of questions regarding the features/attributes of a
single target object. For each query class, there are multiple
logically correct code templates.

As seen in Fig. 1(a), for the query class relVerifyCr, Tem-
plate 1 directly uses a simple query function, powered
by an end-to-end VQA model, such as BLIP[1], to obtain
the answer. In contrast, Template 2 first detects the target
objects. If they are detected, the positions of the objects
are checked based on their horizontal center. If target ob-
jects are not detected, the question is asked directly to the
end-to-end VQA model.

For the queries of type chooseAttr, Template 1 directly
feeds the entire question into a simple query function
(through an end-to-end VQA model) as seen in Fig. 1(b).
Template 2, on the other hand, first detects the target object,
then calls the simple query function on the detected tar-
get object patch. Different from Template 1 and Template 2,
Template 3 first detects the target object, and then employs
the verify property function to check if the detected
object has the specified feature/attribute.

Overall, these templates are all logically correct, but their
VQA accuracy can vary significantly. This can be attributed
to the strengths/weaknesses of different vision models when
used with different input images and query types.

2. Ablation Study on Effect of Qwen

Index Testing Prompt LLM Accuracy

1
Query+API + 3 fixed shot

(ViperGPT) CodeLlama-7B 54.40%

2
Query+API + 3 fixed shot

+ Intermediate Steps
(ViperGPT)

CodeLlama-7B 56.42%

3
Query+API +3 shots

in Best Template (CobraVPS) CodeLlama-7B 63.09%

Table 1. Effect of intermediate steps from Qwen. VQA accuracy
when different prompts are used with the Code LLM.

As outlined in Section 4.1 of our main paper, Qwen is
utilized to generate intermediate steps during the generation

of Code Base B. We have conducted an ablation study to an-
alyze the impact of generating intermediate steps through
Qwen, and reported the results in Table 1. For Experi-
ments 1 and 2, we employed ViperGPT without and with
the intermediate steps from Qwen, respectively. Compar-
ing the first two rows of Table 1 shows that using the in-
termediate steps improves the accuracy of ViperGPT from
54.40% to 56.42%, by 2.02%. However, as shown in row 3
(Experiment 3), our proposed CobraVPS still outperforms
the ViperGPT, using intermediate steps (Experiment 2), by
6.67% on the VQA accuracy.

3. Qualitative Results

Figure 2 presents several example images and queries to
provide a qualitative comparison between ViperGPT and
our proposed CobraVPS. Since the code of the VisRep is
not publicly available, in our main paper, we reported the
numbers from the original paper, and were not able to run
the code ourselves. For this reason, we only present the
qualitative comparison with ViperGPT.

In the first example, the code outputted by ViperGPT
first detects a fence then wire. If the wire patch over-
laps with fence, it returns “yes,” otherwise, it returns “no”.
Thus, based on this generated code, ViperGPT misinterprets
the question as “Is there a wire patch overlapping with a
fence?”. Our proposed CobraVPS, on the other hand di-
rectly uses the simple query function to obtain the an-
swer for this query.

In the second example, both codes outputted by
ViperGPT and our CobraVPS are logically correct, but
in different code templates. The code template used by
ViperGPT relies on the find and verify property
functions. Thus, after finding the persons, this code focuses
on smaller person patches to try to verify their property as a
skier or bartender, which apparently results in the wrong an-
swer. Our CobraVPS, on the other hand, uses the best tem-
plate chosen for this query type, which uses the exists
function on the whole image possibly incorporating more
context. This results in the correct answer to this question.

In the third example, the code generated by ViperGPT
involves incorrect logic, limiting the answer to either “car”
or “truck.” In contrast, the code generated by our pro-
posed CobraVPS first detects vehicle(s) and then calls the
simple query function with the cropped vehicle image
patch to provide the correct answer in this example as well.



Query: Is the open bottle to the left of the plate below the pizza?
Code:
image_patch = ImagePatch(image)
return image_patch.simple_query("Is the open bottle to the left of the plate below
the pizza?")

Query:  Is the fence to the right of a car?

Code:
image_patch = ImagePatch(image)
return image_patch.simple_query("Is the fence to the right of a car?")

Query:  Is the white refrigerator to the left of the bowl?


Code:
image_patch = ImagePatch(image)
white_refrigerator_patches = image_patch.find("white refrigerator")
    if len(white_refrigerator_patches) == 0:
        return image_patch.simple_query("Is the white refrigerator to the left 
	 of the bowl?")
bowl_patches = image_patch.find("bowl")
    if len(bowl_patches) == 0:
        return "no"
white_refrigerator_patch = white_refrigerator_patches[0]
bowl_patch = bowl_patches[0]
if white_refrigerator_patch.horizontal_center < bowl_patch.horizontal_center:
    return "yes"
else:
    return "no"

Query:  Is the broccoli to the left of the cooked beef?


Code:
image_patch = ImagePatch(image)
broccoli_patches = image_patch.find("broccoli")
if len(broccoli_patches) == 0:
    return image_patch.simple_query("Is the broccoli to the left of the cooked
beef?")
broccoli_patch = broccoli_patches[0]
cooked_beef_patches = image_patch.find("cooked beef")
if len(cooked_beef_patches) == 0:
     return "no"
cooked_beef_patch = cooked_beef_patches[0]
if broccoli_patch.horizontal_center < cooked_beef_patch.horizontal_center:
     return "yes"
else:
     return "no"

Template 1

Template 2

(a) relVerifyCr

Query: Do you think the shirt is blue or red?

Code:
image_patch = ImagePatch(image)
return image_patch.simple_query("Do you think the shirt is blue or red?")

Query: Is the coat dark or gray?

Code:
image_patch = ImagePatch(image)
return image_patch.simple_query("Is the coat dark or gray?")

Query: Does the shirt look brown or white?


Code:
image_patch = ImagePatch(image)
shirt_patches = image_patch.find("shirt")
if len(shirt_patches) == 0:
    return image_patch.simple_query("Does the shirt look brown or white?")
shirt_patch = shirt_patches[0]
return shirt_patch.simple_query("Does the shirt look brown or white?")

Query: Do the trousers look gray or dark?


Code:
mage_patch = ImagePatch(image)
trousers_patches = image_patch.find("trousers")
if len(trousers_patches) == 0:

    return image_patch.simple_query("Do the trousers look gray or dark?")

trousers_patch = trousers_patches[0]
return trousers_patch.simple_query("Is the trousers gray or dark?")

Query: Is the folding chair to the right of the chair gray or dark?


Code:
image_patch = ImagePatch(image)
folding_chair_patches = image_patch.find("folding chair")
if len(folding_chair_patches) == 0:
    return image_patch.simple_query("Is the folding chair to the right 

    of the chair gray or dark?")
chair_patches = image_patch.find("chair")
if len(chair_patches) == 0:
    return "no"
for chair_patch in chair_patches:
    if chair_patch.horizontal_center > folding_chair_patches[0].horizontal_center:
        if chair_patch.verify_property("chair", "gray"):
            return "gray"
        return "dark"
return "no"

Query: How does the shoe of the man seem to be, blue or white?


Code:
image_patch = ImagePatch(image)
man_patches = image_patch.find("man")
if len(man_patches) == 0:
    return image_patch.simple_query("How does the shoe of the man seem to     
    be, blue or white?")

for man_patch in man_patches:
    shoe_patches = man_patch.find("shoe")
        for shoe_patch in shoe_patches:
            if shoe_patch.verify_property("shoe", "blue"):
                return "blue"
            elif shoe_patch.verify_property("shoe", "white"):
                return "white"
return "no"

Template 1

Template 2

Template 3

(b) chooseAttr

Figure 1. This picture shows example codes from different template for query class relVerifyCr and chooseAttr respectively



Query: Is the fence made of wire?

image_patch = ImagePatch(image)
return image_patch.simple_query("Is
the fence made of wire?")

CobraVPS

Answer : no

image_patch = ImagePatch(image)
fence_patches = image_patch.find("fence")
if len(fence_patches) == 0:
    return image_patch.simple_query("Is the fence made of wire?")
fence_patch = fence_patches[0]
wire_patches = image_patch.find("wire")
if len(wire_patches) == 0:
    return "no"
for wire_patch in wire_patches:
    if wire_patch.overlaps_with(fence_patch.left,  fence_patch.lower, fence_patch.right, fence_patch.upper):
        return "yes"
return "no"

ViperGPT

Answer : Yes

Correct Wrong

Query: Are there any skiers or bartenders in the picture?


image_patch = ImagePatch(image)
is_skier = image_patch.exists("skier")
is_bartender = image_patch.exists("bartender")
return bool_to_yesno(is_skier or is_bartender)

CobraVPS

Answer : no

image_patch = ImagePatch(image)
person_patches = image_patch.find("person")
if len(person_patches) == 0:
    return "no"
for person_patch in person_patches:
    if person_patch.verify_property("person", "skier"):
        return "yes"
    if person_patch.verify_property("person", "bartender"):
        return "yes"
return "no"

Answer : yes

ViperGPT

Correct Wrong

Query: What vehicle is it?


CobraVPS
image_patch = ImagePatch(image)
vehicle_patches = image_patch.find("vehicle")
if len(vehicle_patches) == 0:
    return image_patch.simple_query("What 

    vehicle is it?")
vehicle_patch = vehicle_patches[0]
return vehicle_patch.simple_query("What is 

this vehicle?")

Answer : train

ViperGPT
image_patch = ImagePatch(image)
vehicle_patches = image_patch.find("vehicle")
if len(vehicle_patches) == 0:
    return image_patch.simple_query("What vehicle is it?")
vehicle_patch = vehicle_patches[0]
if len(vehicle_patches) == 0:
    return image_patch.simple_query("What vehicle is it?")
vehicle_patch = vehicle_patches[0]
if vehicle_patch.vertical_center < 

    image_patch.vertical_center:
    return "car"
else:
    return "truck"

Answer : car

Correct Wrong

Figure 2. Qualitative results comparing our proposed CobraVPS with ViperGPT on three different VQA examples.

References
[1] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-

2: Bootstrapping language-image pre-training with frozen im-
age encoders and large language models. In International
conference on machine learning, pages 19730–19742. PMLR,
2023. 1


	Pesudo-code Template Examples
	Ablation Study on Effect of Qwen
	Qualitative Results

