
A. Appendix A

A.1. Experimental Details
A.1.1. Baselines
As fine-grained visual recognition without expert annota-
tions is an emerging area, there are limited existing base-
lines, with FineR [18] and CLEVER [3] being notable ex-
ceptions. To provide a comprehensive comparison, we also
include below-mentioned strong baselines. (i) CLIP Zero-
Shot Upper Bound (UB), which uses the ground-truth class
names as text prompts, reflecting expert-level knowledge
and serving as an upper performance bound. (ii) Word-
Net Baseline, which uses CLIP with a large vocabulary of
119,000 nouns from WordNet [20]. (iii) BLIP-2 [15] and
Flan-T5xxl [14], a VQA-based approach that identifies the
main object in an image via the prompt “What is the name
of the main object in this image?”. (iv) SCD [7], which first
clusters images and then narrows down labels using CLIP
with a combined vocabulary from WordNet and Wikipedia
bird names. (v) CaSED [5], which retrieves captions from
a large-scale knowledge base and extracts class names by
parsing and classifying nouns with CLIP. (vi) KMeans clus-
tering on CLIP visual features. (vii) Sinkhorn-Knopp Clus-
tering, a parametric method, applied with features from
CLIP and DINO. All baselines are evaluated using the CLIP
ViT-B/16 vision encoder.

A.1.2. Implementation Details
For the Class Names Reasoning and Class Names Refine-
ment modules, following [18], BLIP-2 [15] with Flan-
T5xxl [4] are used as the visual question answering (VQA)
model, ChatGPT (gpt-3.5-turbo) accessed via the OpenAI
API as the large language model (LLM), and CLIP ViT-
B/16 as the vision-language model (VLM). The hyperpa-
rameters for multi-modal fusion and data augmentation are
set to α = 0.7 and K = 10, respectively.

For the Contextual Grounding module, we use Google
Gemini 2.0 LLM accessed via the public API. Where we
prompt the LLM to generate 100 in-context sentences about
the guessed class name. These 100 sentences per class are
then averaged and normalized. Specifics about the prompt
and other details will be publicly available in our shared
repository. In the Class Names Refinement module, a larger
CLIP model based on ViT-L/14 is used for filtration, and
finally, in the Vision-Language Coupling block we utilize
the smaller ViT-B/16 base model for faster inference.

A.1.3. Prompt Design
The exact prompt used with Gemini-2.0 large language
model to obtain in-context class-specific sentences (specif-
ically applied for the CUB-200 dataset, ”classname” word
will be replaced with an actual guessed label from the class-
name reasoning step):

Generate 100 short and common sentences with noun
{classname}, a type of bird, as a main subject.

This noun should only be used in a realistic
and descriptive general context with various real
and related scenarios. In the sentence, highlight
something specific about the classname, a type
of bird, which helps to distinct it from other
birds (it can be its color, shape, size,
background, and so on).

Only use the main and original sense of this noun,
no idioms. Only use visually descriptive adjectives
or participles. Each sentence should be between
5 to 8 words (excluding the noun). Do not use
the possessive form. Do not add an article at
the beginning of the sentence. Do not repeat
the noun in the same sentence. Do not capitalize
the first letter of the sentence unless this is
a name. Do not add a dot at the end of sentence.
Make sure sentences are diverse and do not repeat
each other.

Make sure the noun is included in each sentence.
Make sure the sentences are between 5 to 8 words each.

Return output in the following structure as a single
line: ["<generated_sentence_1>",
"<generated_sentence_2>", ...,
"<generated_sentence_n>"]

A.2. Additional Analysis
A.2.1. Ablation study
In this section we assess the contribution of our key design
components: Class-specific Contextual Grounding (CCG)
and Class Names Refinement (CNR). For this, we perform
an ablation study on the Stanford Dogs dataset, with results
shown in Table 4. The results demonstrate that both com-
ponents contribute meaningfully to performance. Adding
CCG alone already improves clustering accuracy (cACC)
and semantic accuracy (sACC) compared to the baseline (no
CCG or CNR), increasing cACC from 51.30% to 51.86%,
and sACC from 65.41% to 66.98%. This suggests that in-
corporating context tailored to each class helps align the dis-
covered clusters more effectively.

Components Accuracy Sensitivity
CCG CNR cACC ↑ sACC ↑ FN ↓ TP ↑

× × 51.30 65.41 7 52
✓ × 51.86 66.98 4 55
✓ ✓ 51.99 67.11 0 59

Table 4. Ablation study for our proposed components. The per-
formance is reported for the Stanford Dogs dataset for a fixed run.
Acronyms are: Class-specific Contextual Grounding (CCG), Class
Names Refinement (CNR), Clustering accuracy (cACC), Seman-
tic accuracy (sACC). The number of filtered (unused) real class
names is denoted as False Negative (FN), and the number of kept
(used) real class names as True Positive (TP). Best results are in
bold.



For the sensitivity analysis, we compare each guessed
class name with the ground truth labels. If a guessed name
fully matches any of the actual labels, then it is chosen for
analysis and disregarded otherwise. Next, the class name
is considered as True Positive if it was correctly guessed
and used further for the classification, and as False Nega-
tive if it was correctly guessed but was filtered out at the
Class Names Refinement stage (and was not used for the
classification). It can be observed that when both CCG and
CNR are enabled, the system achieves the highest accuracy
and sensitivity, with cACC of 51.99% and sACC of 67.11%.
Importantly, the final configuration results in zero false neg-
atives (FN = 0) with no real class names mistakenly filtered
out while retaining all 59 ground-truth class names (TP =
59). This highlights the ability of our refinement mecha-
nism to retain all semantically relevant classes.

In summary, both CCG and CNR contribute comple-
mentary benefits: CCG enriches semantic grounding, while
CNR ensures high recall in class selection. Their combina-
tion is critical for robust and precise vocabulary-free classi-
fication in fine-grained domains.
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