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Appendix

The appendix consists of the following further discussion:
• Appendix A discusses the model release.
• Appendix B discusses the datasets that we use for pre-

training both TULIP and GeCo.
• Appendix C discusses the datasets that we use to evalaute

TULIP.
• Appendix D discusses the implementation details for the

generative data augmentation portion of our approach.
• Appendix G discusses some model detail configurations.
• Appendix E provides some additional experimental re-

sults complementing the main paper performance.
• Appendix F provides some visualizations of the self-

attention weights of the TULIP model.

A. Code Release

For more information on the code, and for all models, see
https://tulip-berkeley.github.io.

B. Training Data

We pre-train all models on the DataComp-1B dataset
[23]. DataComp-1B is a large-scale dataset comprising
approximately 1.4 billion image-text pairs, curated from
the CommonPool collection of 12.8 billion samples. We
also train with captions from Recap-DataComp-1B [32], a
large-scale dataset where approximately 1.3 billion images
from DataComp-1B have been re-captioned using LLaMA-
3-powered LLaVA-1.5. The goal of this recaptioning
process is to enhance the textual descriptions associated
with web-crawled image-text pairs, addressing issues like
misalignment, brevity, and lack of descriptive detail in
original captions. The new dataset has longer and more
diverse textual annotations, increasing from an average
10.22 words per caption to 49.43 words, capturing richer
contextual details.

GeCo is fine-tuned on standard augmentations, as well as
the following data:

WebVid-10M: WebVid-10M [3] is a large-scale video-text
dataset designed to support video-language model training

and text-to-video retrieval tasks. The dataset is automati-
cally collected from the web using a pipeline similar to Con-
ceptual Captions [44], ensuring diverse and naturally occur-
ring video-caption pairs. A key feature of WebVid-10M
is that it focuses on real-world, diverse, and multimodal
video content, making it a more challenging and represen-
tative dataset compared to traditional manually annotated
datasets. The dataset spans a wide range of video types,
including people performing actions, nature scenes, travel
vlogs, and instructional content. Unlike other large-scale
video datasets such as HowTo100M, which rely on auto-
mated speech recognition (ASR) transcriptions (often intro-
ducing noise and weak supervision), WebVid-10M provides
directly associated textual descriptions, resulting in higher-
quality supervision for training vision-language models.

MVImgNet: MVImgNet [56] is a large-scale dataset of
multi-view images, designed as a bridge between 2D and
3D vision by capturing real-world objects from multiple
viewpoints. The dataset consists of 6.5 million frames ex-
tracted from 219,188 videos, covering 238 object classes
with extensive annotations including object masks, camera
parameters, and point clouds. Unlike single-image datasets
like ImageNet, MVImgNet is built from videos, capturing
objects from different angles, which naturally introduces
3D-aware visual signals.

C. Evaluation Datasets

ImageNet-1K: The ImageNet-1K dataset [15] is a large-
scale benchmark dataset widely used for training and eval-
uating deep learning models in computer vision. It consists
of approximately 1.28 million training images, 50,000 val-
idation images, and 100,000 test images, categorized into
1,000 distinct object classes. These classes span a diverse
range of objects, including animals, vehicles, tools, and ev-
eryday items, making it a comprehensive dataset for image
classification tasks. ImageNet-V2 [43] is a re-evaluated ver-
sion of the original ImageNet dataset, designed to assess the
generalization ability of models trained on ImageNet-1K.
It consists of 10,000 images curated using the same class
distribution and data collection process as the original val-
idation set but sourced independently to reduce potential
dataset biases. ImageNet-ReaL [7] is a re-annotated ver-
sion of the ImageNet validation set, created to provide more
accurate and comprehensive labels. Unlike the original
ImageNet-1K validation set, where each image is assigned a
single ground truth label, ImageNet-ReaL introduces multi-
label annotations, acknowledging that many images contain
multiple valid object categories.

ObjectNet: ObjectNet [4] is a real-world test dataset de-
signed to evaluate the robustness and generalization of im-
age classification models beyond standard benchmarks like
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ImageNet-1K. It consists of 50,000 images featuring ob-
jects from 313 categories, many of which overlap with Ima-
geNet classes. Unlike ImageNet, ObjectNet introduces sys-
tematic variations in object orientation, background, and
viewpoint, making it significantly more challenging for
models.

iNaturalist-2018: iNaturalist-2018 [53] is a large-scale
image classification dataset focused on fine-grained species
recognition, designed to challenge models with real-world
biodiversity data. It contains 437,513 training images and
24,426 validation images across 8,142 species, spanning di-
verse categories such as plants, insects, birds, mammals,
and fungi. Unlike datasets like ImageNet, iNaturalist-
2018 exhibits long-tailed class distributions, meaning some
species have thousands of images while others have only a
few, mimicking real-world imbalances in biodiversity data.

CIFAR-100: CIFAR-100 [31] is a small-scale image clas-
sification dataset designed for evaluating machine learn-
ing models, particularly in the context of deep learning.
It consists of 60,000 color images of size 32!32 pixels,
with 50,000 training images and 10,000 test images. The
dataset contains 100 classes, each with 600 images, and
these classes are further grouped into 20 superclasses (e.g.,
aquatic mammals, vehicles, flowers).

RxRx1: RxRx1 [47] is a biological image dataset designed
for evaluating domain generalization in deep learning mod-
els, specifically in the context of cellular microscopy im-
ages. It consists of 125,510 images of human cells treated
with various chemical perturbations, captured using high-
throughput fluorescence microscopy. A key challenge in
RxRx1 is that images come from multiple experimen-
tal batches across four cell types, introducing batch ef-
fects—systematic variations that can hinder model gener-
alization.

fMoW: fMoW (Functional Map of the World) [14] is
a large-scale remote sensing dataset designed to evaluate
model performance on satellite image classification and
change detection tasks. It contains over 1 million images
from diverse geographic locations, covering 62 categories
of functional land use and infrastructure, such as airports,
military facilities, bridges, and solar farms. The dataset
includes images captured under varied lighting conditions,
seasonal changes, and resolutions, making it a challenging
benchmark for real-world geospatial analysis.

Infographic: InfographicVQA [37] is a dataset de-
signed for Visual Question Answering (VQA) on info-
graphics, which are complex document images combining
text, graphics, and data visualizations. The dataset con-
sists of 5,485 images and 30,035 questions, with annota-
tions requiring reasoning over various elements such as ta-
bles, figures, maps, and textual content. Unlike traditional

Figure C.1. (Top) GeCo generates positive (in blue region) and
hard negative augmentations (in yellow region) of both images
and text. Hard negative is closer to the ‘positive region’ while
randomly sampled images or text are further.

VQA datasets, InfographicVQA places emphasis on ele-
mentary reasoning skills, including counting, sorting, and
basic arithmetic operations.

Winnoground: Winoground [48] is a dataset introduced to
evaluate the ability of vision-and-language models to per-
form visio-linguistic compositional reasoning. Each of the
400 examples in the dataset consists of two images and
two captions, where both captions contain the same set of
words arranged differently, leading to distinct meanings.
The task requires models to correctly match each image
with its corresponding caption, testing their understanding
of how word order affects meaning in a visual context.

D. Data Augmentation

As discussed in subsection 3.2, we generate both positive
view and negative views for contrastive learning. We show
some example in Figure 5. To generate positive view of
the image, we input positive embedding Ep. and a high
image classifier free guidance (cfg) scale 5. To generate
negative view of the image, we input negative embedding
En to the model with a lower image cfg scale 3. To generate
paraphrases for the image augmentation model, we use the
prompt in Figure D.1, which can generate a positive and
a negative example for an input caption. Figure C.1 gives
additional insight into our data augmentation method.

E. Further Experimental Results

This section complements the experiments reported in the
main paper by providing (i) comparisons against very re-
cent baselines, (ii) evidence that TULIP learns transferable
fine-grained visual representations, (iii) performance on the
challenging UNED retrieval suite, and (iv) a more exten-
sive ablation study. Unless otherwise stated, all results are
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Given an input caption describing an image, generate two variants:

Positive Example: A paraphrased version that preserves the exact meaning using synonyms, grammatical reordering,
or structural changes (e.g., active/passive voice).

Negative Example: A minimal, plausible alteration that subtly contradicts the original meaning. Prioritize composi-
tional changes (e.g., swapped roles, spatial relations, object attributes, or verb actions) while keeping lexical overlap
high. The negative should be visually distinct but textually similar to trick models.

Guidelines: Positive Paraphrase:
Use synonyms (“cube” → “square”), reorder clauses (“X beside Y” → “Y next to X”), or adjust syntax (“holding a
leash” → “gripping a dog’s lead”).
Ensure no key details (objects, relationships, attributes) are altered.
Hard Negative:
Swap Roles/Relations: Invert subject-object relationships (“a man riding a horse” → “a horse beside a man”).
Modify Prepositions/Spatial Logic: Change directional/positional cues (“left of” → “under”).
Alter Attributes: Adjust colors, sizes, or quantities (“three red apples” → “two green apples”).
Reorder Phrases with Identical Words: Use the same words in a different order to invert meaning (“plants surrounding
a lightbulb” → “a lightbulb surrounding some plants”).

Example: Input: “A chef in a white hat is slicing vegetables on a stainless steel counter while a cat watches from the
windowsill.”

Positive: “A cook wearing a white cap chops veggies on a shiny metal countertop as a feline observes from the
window ledge.” (Synonym substitution + rephrasing)

Negative: “A cat in a white hat is slicing vegetables on a stainless steel counter while a chef watches from the
windowsill.” (Role swap: “chef” →↑↓ “cat” + retained details create a contradictory but plausible scene.)

Figure D.1. The GeCo prompt.

obtained with the same hyper-parameters used in the main
paper.

E.1. Comparison to Additional Baselines

Table E.2 benchmarks TULIP against TIPS [36],
SILC [39], and the recently released EVA-02 CLIP [20]
under matched model and resolution settings. TULIP
clearly surpasses these strong competitors on Flickr,
ImageNet and ObjectNet. On COCO, it matches the
performance of the higher-resolution TIPS variant while
using a lower input resolution.

E.2. Generality of the Learned Representations

To probe the low-level geometric understanding of TULIP,
we follow El Banani et al. [19] and train a single lin-
ear layer on frozen features for monocular depth estima-

tion (Table E.3) and 3-D correspondence on NAVI (Ta-
ble E.4). TULIP substantially narrows (and in most cases
closes) the gap between vision-language pre-training and
specialist self-supervised models, confirming that our con-
trastive Generative-Contrastive (GeCo) augmentations do

not harm—and in fact improve—fine-grained spatial rea-
soning.

E.3. Retrieval on the UNED Benchmark

Table E.1 reports results on the recent UNED suite. TULIP
establishes a new state-of-the-art on all seven domains and
on the overall score, highlighting its robustness on long-tail,
fine-grained retrieval tasks.

E.4. Extended Ablation Study

Table E.5 dissects the impact of every component added on
top of the SigLIP backbone. The progressive gains con-
firm that each design choice—recaptioned data, intra-modal
contrast, textual contrast, reconstruction loss, and finally the
GeCo generative augmentations—contributes meaningfully
and additively to the final performance. We caution, how-
ever, that carrying out ablations on dozens of datasets risks
overfitting, so we restrict the study to a representative sub-
set.

14



Table E.1. UNED retrieval (ViT-B). Numbers are Recall@1 / mMP@5.
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CLIP 76.4 69.5 42.8 18.3 15.9 9.6 42.3 32.3 22.6 9.9 57.9 39.4 54.1 29.4 49.6 27.8
MetaCLIP 84.4 78.9 54.3 23.6 15.4 9.4 46.9 36.5 17.0 8.2 56.1 37.5 62.2 36.1 56.8 33.2
SigLIP-2 94.6 93.1 58.7 25.7 14.2 8.7 48.1 38.2 32.1 14.7 73.1 55.3 65.8 39.4 61.1 36.9
TULIP 96.8 95.8 72.6 32.3 22.2 12.7 58.9 49.1 54.1 22.8 72.5 55.8 68.0 41.2 67.0 40.9

Table E.2. TULIP vs. more baselines. Res. denotes input resolution, FT indicates linear probing. Other numbers are zero-shot.

COCO Flickr
Model Res. I↓T T↓I I↓T T↓ I IN INFT IN-V2 ObjNet

TIPS-g/14 224 73.3 58.1 93.4 82.1 79.6 86.3 — —
TIPS-g/14 448 74.0 59.2 93.8 83.8 79.7 86.1 — —
TULIP-g/16 384 73.0 57.8 95.7 87.2 85.3 89.6 80.0 88.6

EVA-02-CLIP-B/16 224 — — — — 74.7 — 67.0 62.3
SILC-S-B/16 256 66.2 48.7 — — 76.6 — — —
TULIP-B/16 224 70.1 54.2 93.9 81.8 79.5 85.9 73.0 74.2

Table E.3. Linear probing for depth estimation. Higher ω and lower RMSE are better.

NYU NAVI

Model ω1 ω2 ω3 RMSE ω1 ω2 ω3 RMSE

CLIP 52.1 81.7 93.7 0.945 24.9 48.7 68.5 0.199
SigLIP 63.8 89.7 97.3 0.719 36.5 63.1 79.2 0.157
SigLIP-2 67.9 91.4 97.9 0.660 36.3 63.4 79.7 0.157
TULIP 74.4 93.9 98.3 0.568 42.3 76.9 96.2 0.090

Table E.4. NAVI 3-D correspondence. Retrieval at varying error thresholds (higher is better).

Model R@0.01m R@0.02m R@0.05m R@5px R@25px R@50px

SigLIP-2 12.0 26.4 62.5 1.61 9.21 22.0
TULIP 14.4 29.1 64.8 1.87 12.2 24.9

Table E.5. Zero-shot ablations (ViT-B). For COCO/Flickr we report I→T retrieval.

Model Classification COCO Flickr

IN-val IN-v2 IN-ReaL ObjNet IN-10s T↓I / I ↓T T↓I / I ↓T

SigLIP 76.2 69.5 82.8 70.7 69.9 47.2 / 64.5 77.9 / 89.6
+ Recaptioned 76.6 70.0 83.4 71.2 70.8 48.5 / 64.7 79.4 / 90.0
+ I/I 77.5 70.8 84.3 72.6 72.0 50.2 / 70.3 79.2 / 90.7
+ T/T 78.1 71.3 85.5 72.8 72.7 51.1 / 69.9 79.7 / 91.2
+ Reconstruction 78.5 71.7 85.3 73.4 72.5 52.1 / 69.3 80.0 / 92.8
+ GeCo (full TULIP) 79.5 73.0 86.2 74.2 73.8 54.2 / 70.1 81.8 / 93.9
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Figure E.1. Visualization of the attention heads. Attention maps are averaged across transformer blocks, then up-sampled to the resolution
of the original image.

Hyperparameter ViT-G/16 ViT-SO400M ViT-H-14 ViT-B-16

Embed Dim 1536 1152 1152 768
Init Logit Bias -10 -10 -10 -10
Image Size 384 384 224 224
Patch Size 16 14 14 16
Layers (Vision) 43 27 32 12
Width (Vision) 1536768 1152768 1280 768
Head Width (Vision) 64 64 80 64
MLP Ratio 3.7362 3.7362 3.7362 4.0
Pooling map map tok map
Projection none none linear none
Context Length 70 70 70 70
Vocab Size 109871 109871 109871 109871
Tokenizer tulip-tokenizer tulip-tokenizer tulip-tokenizer tulip-tokenizer
Width (Text) 1152 1152 1024 768
Heads 16 16 16 12
Layers (Text) 27 27 24 12
No Causal Mask True True True True
Projection Bias True True True True
Pool Type last last last last
Norm Eps 10→6 10→6 10→6 10→6

Activation Approx. tanh tanh tanh -
Attentional Pool False False False False
Attn Pooler Queries 256 256 256 256
Attn Pooler Heads 8 8 8 8
Pos Embed Type learnable learnable learnable learnable
Final LN After Pool False False False False
Output Tokens False False False False
Timm Pool map map avg map
Timm Proj none none linear none
Timm Proj Bias False False False False
Timm Drop 0.0 0.0 0.0 0.0
Timm Drop Path None None None None

Table E.6. Comparison of Vision Transformer (ViT) Model Hyperparameters for different TULIP variants.

F. Attention Visualization

Figure E.1 shows a visualization of the attention heads of
the So/14 model. We can see that similar to DINOv2, the
model performs local semantic segmentation as an emer-
gent behavior the in the attention weights.

G. Model Configurations

Table E.6 provides an overview of our model configura-
tions, detailing key parameters such as image size, sequence
length, hidden size, number of layers, and text context
length. We follow SigLIP 2 to use So400M language en-
coder for ViT-G/16.
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