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A.1. Qualitative Results
We provide qualitative results that effectively showcase the
strengths and limitations of our method and model.

A.1.1. Qualitative Results of Strefer-Synthesized Data
We present qualitative results of our Strefer-synthesized
data in Fig. 6 and Fig. 7, as well as qualitative results of our
novel referring masklet generation pipeline within Strefer
in Fig. 8, Fig. 9, Fig. 10 and Fig. 11. Observations of the
qualitative results are presented in the figure captions; more
discussions are available in Sec. 4.3 of the main paper and
Appendix A.7.

A.1.2. Qualitative Results of Strefer-Trained Model
We present qualitative results of our final Strefer-trained
model in comparison to the ‘Baseline’ model (from our
quantitative result tables). Specifically, results are shown
in Fig. 12 and Fig. 13 for the task of Video Regional Cap-
tioning/Description; Fig. 14, Fig. 15, Fig. 16, Fig. 17 and
Fig. 18 for the task of Video Regional QA; and Fig. 19,
Fig. 20 and Fig. 21 for the task of Timestamp-Referred
Video QA. Three failure cases are also shown in Fig. 22,
Fig. 23 and Fig. 24. Observations of the qualitative results
are presented in the figure captions; more discussions are
available in Sec. 4.3 of the main paper and Appendix A.7.

A.2. Strefer Details
Notably, in the design of Strefer, we choose masks to ac-
commodate diverse, free-form spatial references from users
(e.g., points, scribbles, etc.), which can be readily converted
into masks using off-the-shelf tools like SAM2 [43].

We present our designed Referring Masklet Generation
Pipeline in Algorithm 1 and the Video Clipper in Algo-
rithm 2. On the right, we list the prompt used for the Video
LLM-based Active Entity Recognizer.

Algorithm 1 Referring Masklet Generation Pipeline
Require: Video V , Referring Expressions R = [r1, . . . , rn], Generalized Nouns

G = [g1, . . . , gn]
Ensure: Masklets aligned to each referring expression ri → R
1: procedure GENERATEMASKLETS(V,R,G)
2: F, S ↑ SAMPLEANDREORDERFRAMES(V)
3: f

→
, Df→ ↑ SELECTINITIALFRAME(S,G,R)

4: M ↑ BIDIRECTIONALSEGMENTATIONTRACKING(F, f
→
, Df→ )

5: M ↑ ASSIGNEXPRESSIONSTOMASKLETS(M, f
→
,R,G)

6: return M
7: end procedure
8: procedure SAMPLEANDREORDERFRAMES(V)
9: F ↑ sample frames from V

10: S ↑ reorder F using a middle-first recursive strategy
11: return (F, S)
12: end procedure
13: procedure SELECTINITIALFRAME(S,G,R)
14: max count ↑ ↓1, f→ ↑ S[↓1], best frame ↑ S[0], best detections

↑ ↔
15: for each frame f → S do
16: Df ↑ GROUNDINGDINO(f, set(G))
17: if |Df | > max count then
18: max count ↑ |Df |, best frame ↑ f , best detections ↑ Df

19: end if
20: if |Df | ↗ |R| then
21: return (f,Df )
22: end if
23: end for
24: if f→ == S[↓1] and best frame ↘= f

→ then
25: f

→ ↑ best frame, Df→ ↑ best detections
26: end if
27: return (f→

, Df→ )
28: end procedure
29: procedure BIDIRECTIONALSEGMENTATIONTRACKING(F, f

→
, Df→ )

30: Define forward sequence: F↑ = [f→
, f

→+1, . . . ]
31: Define backward sequence: F↓ = [f→

, f
→↓1, . . . ]

32: Initialize T ↑ []
33: for each clip C → {F↑

,F↓} do
34: MC ↑ SAM2(C, Df→ , video)
35: Append MC to T
36: end for
37: return MERGE TRACKING RESULTS(T )
38: end procedure
39: procedure ASSIGNEXPRESSIONSTOMASKLETS(M, f

→
,R,G)

40: Partition M into groups based on G
41: for each group G in partitioned M do
42: BG ↑ available bounding boxes on frame f

→ in group G

43: for each referring expression ri → R do
44: bi ↑ REXSEEK(f→

,BG, ri)
45: Assign ri to mask in G corresponding to box bi

46: end for
47: Post-process assignments to ensure valid mapping
48: end for
49: return M
50: end procedure

Prompt P.1: Entity Recognizer

Prompt: What “active” scene entities can you iden-
tify from the video? An entity refers to an object,
and “active” scene entities are scene objects that
have any dynamic behaviors, such as actions, inter-
actions with others, or movements. Please compile a
list of clearly visible “active” scene entities from the
video. Use entity appearance in concise description
to distinguish one “active” scene entity from another
if possible.
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Figure 4. Overview of our novel Referring Masklet Generation Pipeline within Strefer. This pipeline produces tracked segmentation
masks from videos with complex structures based on multi-word natural language referring expressions. Our pipeline is carefully crafted to
address key limitations overlooked by prior works [22, 37, 68] by orchestrating complementary strengths of the state-of-the-art pixel-level
vision foundation models to achieve more effective results. It handles challenging scenarios, including multiple same- or similar-category
entities described differently, entities absent in the first frame, and entities that temporarily exit and re-enter the scene.

A.3. Model Details
We synthesize video instruction tuning data to enable Video
LLMs fine-grained, mask-level comprehension at any spe-
cific regions and any timestamps for a given video. These
capabilities are achieved by tuning a general, coarse-level
next-token-prediction Video LLM with plug-and-play en-
hancements for spatiotemporal localized understanding.

To support detailed region-level understanding, we in-
corporate the spatiotemporal object encoder design from
VideoRefer [68], which enables the model to understand
fine-grained masks and masklets. For precise timestamp-

level comprehension, we introduce learning special tem-
poral tokens inspired by GroundedLLM [50], allowing the
model to interpret specific moments in time properly.

We integrate these plug-and-play modules into BLIP-3-
Video [45]. The full model architecture is described in de-
tail below.

A.3.1. Architecture Overview
The Video LLM processes a video and a user’s multimodal
query to generate a textual response. A multimodal query
consists of the textual component of the question, a masklet



Algorithm 2 Video Clipping Pipeline
1: procedure CLIPVIDEO(video)
2: B ↑ PYSCENEDETECT(video, threshold=20)
3: if B = ↔ and DURATION(video) ↗ 3 sec then
4: E ↑ GETEMBEDDINGS(video);
5: D ↑ PAIRWISEDISTANCES(E)
6: T ↑ CLUSTERINGAUTOTHRESHOLD(D, 1.7);
7: C ↑ HIERARCHICALAGGLOMERATIVECLUSTERING(E, T )
8: B ↑ EXTRACTCLIPTIMESTAMPBOUNDARIES(C)
9: end if

10: return B

11: end procedure
12: procedure CLUSTERINGAUTOTHRESHOLD(D, f )
13: m ↑ mean(D); s ↑ std(D); M ↑ max(D)
14: return min(m + f · s, M)
15: end procedure

along with its associated frames referring to a specific re-
gion within the video, and optionally, one or more specific
timestamps within the video.

The architecture of the Video LLM is illustrated in Fig. 3
of the main paper. At a high level, the LLM processes
four types of input tokens: (i) visual tokens, which en-
code the global context of the video; (ii) region tokens,
which represent specific visual regions referenced in the
user query (e.g., a mask or masklet); (iii) timestamp/tem-

poral tokens, which indicate particular temporal locations
within the video; and (iv) text tokens, which represent the
textual content of the query itself. These tokens are jointly
fed into the LLM, which then auto-regressively generates a
textual response.

The construction of visual, region, and timestamp tokens
from raw inputs—namely, the video and multimodal user
query—is detailed in Appendix A.3.2, Appendix A.3.3, and
Appendix A.3.4, respectively.

A.3.2. Video Token Representation
Given an input video xv → RTv≃3≃Hv≃Wv , where Tv is
the number of frames and Hv,Wv are the height and width
of the frames, a visual encoder extracts the video’s global
visual features fv → Rtv≃dv≃hv≃wv .

A Video-Language Connector is then applied on top of
the visual encoder to project the global visual features into
a sequence of visual tokens ev → RLv≃d, where d repre-
sents the dimensionality of the language model’s input to-
ken space, and Lv is the number of visual tokens of a video.
This connector aligns the visual features to the input space
of a language model while preserving semantics relevant for
multimodal understanding. In some designs (e.g., BLIP-3-
Video [45]), the connector also incorporates a token com-
pression module to reduce the number of tokens, improving
efficiency without sacrificing critical information.

A.3.3. Masklet Reference Token Representation
Our modified Video LLM is designed to understand user
queries about videos that involve spatial or spatiotemporal,
local regional references. To support diverse, free-form spa-

tial reference from users (e.g., points, scribbles, etc.), we
standardize them by converting these free-form spatial ref-
erences into regional masks before processed by the model.
This approach is effective because many forms of spatial
reference can be easily transformed into masks using off-
the-shelf tools like SAM2 [43].
Mask and Masklet. A regional mask is represented as a 2D
binary matrix RHm≃Wm , where Hm and Wm are the height
and width of the image containing the region of interest,
with a value of 1 inside the region and 0 outside. When
extended over time, a temporal sequence of such regional
masks xr → RTm≃Hm≃Wm is referred to as a masklet. Since
a mask is special case of masklet with only one frame, we
describe the masklet feature extraction process below.
Masklet Token Representation. Leveraging the same vi-
sual encoder, our model extracts image feature maps fm →
Rtm≃dv≃hm≃wm for the frames that contain the masklet xr.
The masklet xr and its corresponding frames’ feature maps
fm are then processed by a Region-Language Connector,
which outputs region tokens er → RLr≃d that are aligned
to the language space, where Lr is a predefined number of
region tokens.

The Region-Language Connector begins by resizing the
binary masklet xr via bilinear interpolation to match the
spatial (and temporal if the visual encoder condenses the
time axis) dimensions of fm, yielding a resized masklet of
shape Rtm≃hm≃wm . A Mask Pooling operation is then ap-
plied: average pooling is performed over the spatial loca-
tions within the mask region for each frame, producing a
pooled feature representation p → Rtm≃dv . This represen-
tation can be interpreted as a sequence of tm region tokens,
each of dimensionality dv .

To reduce the temporal redundancy, a Temporal Token
Merge module condenses the tm tokens into Lr representa-
tive ones (Lr < tm). Specifically, for p → Rtm≃dv , cosine
similarities are computed between each pair of temporally
adjacent tokens:

si,i+1 =
p
i · pi+1

↑pi↑ · ↑pi+1↑ , 0 ↓ i < tm ↔ 1 (1)

This yields a similarity vector s → Rtm↓1. A similarity
threshold ω is then selected as the Lr-th largest value in s.
Next, the sequence p is processed sequentially from the be-
ginning to the end to form token groups. An initially empty
group is created and the first token in p is added to it. For
each index i from 0 to tm ↔ 2, if si,i+1 ↗ ω, then p

i+1 is
added to the current group. Otherwise, the current group is
finalized, and a new group is initiated with p

i+1.
This process produces exactly Lr token groups. Each

group is finally merged into a single representative token by
averaging the embeddings of all tokens within the group.

Finally, the resulting Lr tokens, each in Rdv , are pro-
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Figure 5. Data composition of our final recipe , used in our ex-
periments in Sec. 4 of the main paper.

jected into the language embedding space via an MLP, pro-
ducing the final region tokens er → RLr≃d.

Note that the Temporal Token Merge module is bypassed
when the user query involves only a single frame mask (as
opposed to a masklet).

A.3.4. Timestamp Reference Token Representation
By design, our model is effective in scenarios where users
may refer to specific times within videos in their queries.
However, LLMs often struggle with interpreting numerical
values [46]. To address this challenge, we adopt the Tempo-
ral Token Representation method introduced in Grounded-
VideoLLM [50], which discretizes continuous time into a
sequence of temporal tokens, making time-related reason-
ing more manageable for LLMs.

Suppose the video has a duration of L seconds. We
divide it into M equal-length, non-overlapping, and non-
spacing segments, resulting in M+1 anchor points that span
from the start to the end of the video. These anchor points,
labeled from <0> to <M>, represent evenly spaced tem-
poral positions throughout the video. Each specific times-
tamp within the video is mapped to an anchor point and then
encoded as a temporal token. For example, <0> marks
the beginning of the video, while <M> represents the end.
These M+1 anchor points are added to the LLM’s vocabu-
lary (by expanding the LLM’s vocabulary), enabling unified
modeling of time alongside text. Mathematically:

A specific continuous timestamp ε can be easily con-
verted to a temporal token <t> and vice versa:

t = Round
(
M · ε

L

)
, ε = L · t

M
(2)

In this way, specific timestamps in the user query are con-
verted into timestamp anchor points. Both text and times-
tamp anchor points are then mapped to embeddings through
the extended word embedding layer of the LLM, forming
interleaved text tokens and temporal tokens.

In our model tuning and evaluation experiments, since
our Video LLM processes 32 input frames, we set M = 31
to learn 32 temporal tokens.

A.4. Experimental Implementation Details
To evaluate the quality of our synthesized instruction data,
we integrate it into a base video instruction tuning recipe,

which combines the video instruction-tuning data used
by BLIP-3-Video [45] with VideoRefer-700K [68]. Our
baseline is the model tuned on this base recipe. The
video instruction-tuning data used by BLIP-3-Video com-
prises data from multiple sources, including Mira [21],
VideoInstruct-100K [35], MSVD-QA [57], MSRVTT-
QA [57], ActivityNet-QA [66], TGIF-QA [19], and
NExT-QA [56]. VideoRefer-700K is a recently released
instruction-tuning dataset for video mask and masklet re-
ferring tasks, but it lacks timestamp-referring instructions.

The full model is tuned except the visual encoder. The
visual encoder is not fine-tuned due to insufficient data,
which prevents effective training. Since the encoder is de-
signed to extract complex visual patterns and features from
raw RGB signals, it requires a large amount of data to gen-
eralize well. To be specific, we start from the pretrained
image-comprehension vision LLM, the pre-trained BLIP-
3 [61] model, with additional untrained architectural en-
hancements from BLIP-3-Video [45], as well as those de-
scribed in Sec. 3.3 of the main paper. We adapt BLIP-3
for video and masklet comprehension by fine-tuning the full
model illustrated in Fig. 3 of the main paper, except for the
visual encoder, using 32 frames per video and 32 temporal
tokens. Other hyperparameters, such as learning rate and
batch size, were selected based on downstream evaluation
results for the baseline. However, when tuning the model
using recipes integrated with our data, we did not change
any hyperparameters from those used in the baseline. The
training takes roughly 1 day and requires 3↘8 H200 GPUs.
The resulting model has 4B parameters.

In the baseline and ablation models, if its training data
lacks mask-referring instructions, the corresponding mod-
ules are excluded; likewise, timestamp-related modules are
omitted if timestamp-referring instructions are not present
in training. Therefore, the ‘Baseline Ablation’ model pre-
sented in the result tables shares the same architecture as
BLIP-3-Video [45]; the model does not include the plug-
and-play modules described in Sec. 3.3 of the main paper,
as its training data lacks instructions that refer to masks or
timestamps. The ‘Baseline’ model presented in the result ta-
bles does not have ‘Timestamp Conversion’ or an extended
LLM vocabulary for learning special temporal tokens (see
Fig. 3 of the main paper) due to the lack of instruction
data involving specific timestamps. We report all results
for GPT-4o and GPT-4o-mini as presented in [68].

Our synthetic data includes full-length masklets per re-
ferring entity, but for efficient training, we sample a sin-
gle mask on a random frame per instruction-response pair.
At evaluation, we use the full masklet. Training with full
masklets is expected to further improve performance.



A.5. Evaluation Details
We describe the evaluation benchmarks for Mask-Referred
Regional Description, Mask-Referred Regional QA, and
Timestamp-Referred Video QA below, as these represent
less common evaluation settings for Video LLMs.
VideoRefer-BenchD [68] assesses the model’s ability to de-
scribe an entity across a video, given a mask or masklet of
that entity. The benchmark comprises 400 videos from the
test set of Panda-70M [6].

To evaluate performance on this benchmark, we use
the following instruction template: “Please give a
detailed description of the highlighted
object <region> in the video.” The word
<region> is substituted with model-extracted regional
tokens if the model has built-in mechanisms to extract
regional features.

The model evaluation is performed by GPT-4o by assign-
ing scores to the generated predictions on a scale range from
0 to 5 across the following four dimensions [68]:
• Subject Correspondence: This dimension evaluates

whether the subject of the generated description accu-
rately corresponds to that specified in the ground truth.

• Temporal Description: This aspect analyzes whether the
representation of the object’s motion is consistent with
the actual movements.

• Appearance Description: This criterion assesses the accu-
racy of appearance-related details, including color, shape,
texture, and other relevant visual attributes.

• Hallucination Detection: This facet identifies discrepan-
cies by determining if the generated description includes
any facts, actions, or elements absent from reality, like
imaginative interpretations or incorrect inferences.

VideoRefer-BenchQ [68] evaluates a model’s ability to
answer video entity-related questions, given one or more
entities’ masks or masklets within a video. The bench-
mark includes 1, 000 multiple-choice questions spanning
198 videos sourced from various datasets, including
the test set of MeViS [12], A2D-Sentences [14], and
Refer-YouTube-VOS [53]. Questions are crafted to as-
sess different dimensions of understanding, including Basic
Questions, Sequential Questions, Relationship Questions,
Future Predictions and Complex/Reasoning Questions.

Sequential Questions typically ask about entity action
and ordering; Basic Questions typically concern attributes
like object color. Relationship Questions involve more
than one object regions in the question. Future Predic-
tions involve weakly grounded reasoning about forthcom-
ing events. Notably, models generally perform best on
Complex/Reasoning Questions, making this category the
easiest despite its name.

We use the following instruction template: “Please
answer the following question about the
<region>. {question}”.

Timestamp-based Yes/No QA on QVHighlights is a task
that repurposes existing annotations from the video high-
light detection dataset, QVHighlights [23]. Specifically,
for each annotated segment—defined by a start and end
timestamp and an associated language description—we
construct a question prompt in the following form:
‘Does the following description
accurately reflect what happens
in the video between <start time>
and <end time>? Description:
{description}. Respond with ‘Yes’ or
‘No’ only.” Each of these prompts is assigned the
ground truth answer “Yes”.

To generate negative (i.e., “No”) samples, we randomly
select segments from the same video that do not overlap
with any annotated intervals. To ensure this, we first ex-
pand each annotated timestamp by a buffer of 5 seconds on
both sides, then merge overlapping intervals to form a set of
excluded ranges. We then identify all remaining gaps in the
video timeline that lie outside these excluded regions. From
these valid gaps, we randomly select a new segment that
satisfies a minimum duration of 10 seconds. A description
from an annotated segment is then paired with this unrelated
time window to form a mismatched QA example with the
correct answer “No”.

We ensure a balanced answer distribution, with almost
50% of the samples labeled as “Yes” and 50% as “No”.

For each question, we substituted <start time> and
<end time> with their corresponding timestamps. For
models that do not learn temporal tokens, timestamps are
represented by default in the HH:MM:SS.xxx format. For
models that do learn temporal tokens, we use temporal
tokens to substitute <start time> and <end time>.
For example, if a model learns 32 temporal tokens and
the video’s duration is 90 seconds, a timestamp like
00:00:19.228 is converted to <7>.

A.6. Training-Free Methods Experimental Results
It is worth noting that incorporating the plug-and-play mod-
ules and modify the architecture of the pre-trained general-
purpose Video LLM for space-time referring is not strictly
necessary. We explore training-free approaches—SoM [63]
for masklet comprehension and NumberIt [55] for times-
tamp understanding.
SoM: Mask-Overlay-Frame Prompting. We follow
the implementation of the Set-of-Mark (SoM) method
from VideoRefer [11] to apply masks to video frames, as
originally proposed by [63]. We also changed the question
prompt into: “I have outlined an object with
a red contour in the video. Please
describe the object in detail.” The results
are presented in Table 5. After applying SoM, the aver-
age performance on the Mask-Referred Video Regional



Mask-Referred Regional Description (VideoRefer-BenchD [68])
Samples

Added (%) Avg.
Subject

Correspondence
Temporal

Description
Appearance
Description

Hallucination
Detection

Baseline Ablation Model N/A 2.7308 3.5200 2.4235 2.5639 2.4160
Baseline Ablation Model + SoM [63] N/A 2.6593 3.5600 2.1834 2.3576 2.5363

Table 5. Regional Description results on VideoRefer-BenchD before and after applying the training-free method, SoM [63].

Timestamp-Referred QA (Yes/No) Samples Added (%) QVHighlights [23]
Baseline Ablation: Video Instruction-Tuning Data [45] N/A 0.5297
Baseline Ablation: Video Instruction-Tuning Data [45] + NumberIt [55] N/A 0.5301
Baseline: Base Recipe (1,948,679 samples) N/A 0.5288
Baseline: Base Recipe (1,948,679 samples) + NumberIt [55] N/A 0.5311

+ G6 + G7 + G8 + Remaining G5 (Sampled) + G1 28.73% 0.6031
+ G6 + G7 + G8 + Remaining G5 (Sampled) + G1 + NumberIt [55] 28.73% 0.6041

Table 6. Results of timestamp-based Yes/No QA on QVHighlights before and after applying the training-free method, NumberIt [55].

Description task decreases, but performance increases on
certain metrics, e.g., Subject Correspondence.

Our analysis reveals that the effectiveness of training-
free SoM is highly sensitive to the way masks are rendered
on the video frames. In our initial implementation, we used
thicker mask boundaries and semi-transparent red fill color.
This approach led to severe hallucinations by the model,
which often misinterpreted masked regions as merely red-
colored objects. In contrast, the SoM implementation from
VideoRefer [11] uses thinner boundaries and fully trans-
parent fills, resulting in significantly improved performance
over our version. Nevertheless, the performance remains
lower than the baseline without any SoM masking.
NumberIt: FrameID-Overlay-Frame Prompting.
Similar to SoM, NumberIt [55] overlays the frame
ID at a specific location on each frame. We overlaid
the frame ID in red, following the authors’ sugges-
tion, and placed each ID in the top-left corner of the
corresponding frame (the resulting rendering effect
is similar to Fig. 20). We also modified each ques-
tion as follows: The red numbers on each
frame represent the frame number. Does
the following description accurately
reflect what happens in the video
between <frame start> and <frame end>?
Description: {description}. Respond
with ‘Yes’ or ‘No’ only. For each question, we
substituted <frame start> and <frame end> with
their corresponding frame IDs. The results are listed in
Table 6. The performance on timestamp-based Yes/No
Video QA in QVHighlights shows a slight improvement
after applying the training-free method, NumberIt.

In summary, using a pretrained general-purpose Video
LLM for space-time referring tasks does not necessarily
require modifying the model architecture or fine-tuning
the model. Training-free approaches such as SoM and
NumberIt can help the model perform mask-referring or

timestamp-referring tasks, though their performance gains
may be limited. We hypothesize that incorporating these
techniques during model fine-tuning—while preserving the
original architecture—may lead to performance gains [55],
which we leave as future work.

A.7. Limitations and Future Directions
Strefer synthesized data is not error-free. For exam-
ple, in the last blue-highlighted video segment shown in
Fig. 6 of the Appendix, Strefer identifies the woman as
not present. However, a human viewer would easily iden-
tify the woman in that segment while watching the video,
despite the fact that she is largely occluded and the frames
are mostly occupied by the child. This error also occurs
because we did not employ a more complex, dense video
captioning framework that leverages inter-segment infor-
mation, such as a hierarchical [74] or differential video cap-
tioning [5] method. We actually tried these approaches,
but they did not yield better results than clip-by-clip cap-
tioning using current open-source models. We also ex-
perimented with several alternative open-source mid-scale
Video LLMs, including Qwen2.5-VL-7B-Instruct, LLaVA-
NeXT-Video-34B, LLaVA-OneVision-7B, and Tarsier-7B.
Ultimately, we selected Tarsier-34B, as it appeared to pro-
vide more accurate, action-centric descriptions.

Scenes characterized by high visual clutter and signifi-
cant dynamic variations continue to pose substantial chal-
lenges. Fig. 11 illustrates a failure case of our referring
masklet generation—the woman is not segmented in the
first four frames. This highlights that videos with heavy
motion blur and long-range dependencies remain challeng-
ing to handle. The issue stems from the tracking limitations
of SAM2, the tracking and segmentation model we employ
which is sensitive to the selection of the start tracking frame.
Fig. 7 presents another example of tracking and segmen-
tation failure—the child in the black shirt lacks associated
masks in frames 10 and 11, despite being clearly visible.



Strefer may inherit limitations from the underlying
models used in its modular components, such as pixel-
level foundation models, LLMs, and Video LLMs. For
instance, LLMs and Video LLMs are known to halluci-
nate, potentially introducing misleading information into
annotated video metadata and synthesized question–answer
pairs. Similarly, the extraction of pixel-level information
may be less reliable in videos with highly similar indi-
viduals or densely populated scenes (e.g., crowded urban
environments), which the pixel-level foundation models
we used could not reliably handle. Despite these chal-
lenges, the modular nature of Strefer positions it well to
benefit from future improvements in its underlying mod-
els—including LLMs, Video LLMs, and grounding vision
foundation models—as they continue to evolve.

Strefer involves multiple models, which may hinder ex-
act reproduction of its pseudo-annotation, data synthesis as
well as our model training procedures for research groups
with limited resources. However, Strefer is a multi-stage
modular framework, wherein individual model components
can be substituted with more computationally efficient alter-
natives, enabling flexible adaptation under varying resource
constraints.

In terms of the limitations inherent to models trained on
Strefer-synthesized data, Fig. 22 shows a typical failure
case where the region indicated by the mask is neither the
primary foreground object nor centrally positioned in the
frame. This reflects a common issue across all models, in-
cluding baselines, which tend to exhibit both a foreground
main object bias and a center bias. Furthermore, Fig. 23
illustrates another failure case, underscoring the persistent
difficulty in capturing fine-grained action semantics.

Future work may further improve Strefer by refining in-
dividual modules—for example, improving the video clip-
ping pipeline to produce entity-centric segments, and in-
corporating feedback-verification mechanisms to minimize
hallucinated content in video metadata and instruction-
following pairs. Additionally, given the potential for er-
ror propagation in our modular framework, as well as the
nature of synthetic data, which may not fully match real
human question distributions, future research is encour-
aged to develop effective filtering strategies for the synthetic
instruction-tuning data as a final quality assurance or ad-
justment step in the data engine, thereby enabling more ef-
ficient, reliable, and robust model training.

For the development of the referring and reasoning video
model, our current trained models are limited to mask-based
spatial referring and is not trained for other types of spa-
tial references such as points, boxes, and scribbles. How-
ever, since these other forms of spatial references are in-
herently sparser than masks and can be easily derived from
object segmentation masks, an avenue for future research is
to explore transforming the current mask-level instruction-

tuning data produced by Strefer into alternative data for-
mats, and to train models that can comprehend more diverse
forms of user spatial references.

Moreover, the LLM backbone of models we trained on
our data is based on the pretrained microsoft/Phi-3-mini-4k-
instruct [1]. As with many other Video LLMs, the perfor-
mance of our model is heavily influenced by the capabili-
ties of the underlying LLM. We encourage further research
into training Video LLMs on Strefer-synthesized data us-
ing larger and more powerful models. However, this typ-
ically demands significantly more tuning data and greater
computational resources.

In our experiments, we conducted rather limited explo-
ration of the optimal training data mixture. As a result, the
current composition may not represent the most effective
setup for fostering broad, balanced and transferable skills.
Future work could focus on systematically optimizing the
data composition, which is likely to result in more substan-
tial and consistent performance gains across diverse bench-
marks and metrics.

Finally, our model is grounded at the perception level
rather than at the output response generation level. While
grounding at the output level offers a more direct path to
interpretable video-language reasoning, it requires train-
ing data with high-fidelity spatiotemporal annotations. At
present, the boundary of the fine-grained space-time infor-
mation generated by Strefer may lack the precision re-
quired to reliably supervise such models.

Our work centers on referring understanding-where the
model leverages fine-grained spatiotemporal cues as con-
ditional input, and our models are trained using synthe-
sized instruction-tuning data, rather than being directly
supervised by pseudo-annotated dense video metadata.
This setup is inherently more robust to moderate imper-
fections—such as missing entities or imprecise temporal
boundaries. For example, as shown in Fig. 7, even when
the temporal span of the masklet for the child in the black
shirt is incomplete, the associated instruction-response pair
remains accurate and meaningful. This resilience arises be-
cause referring understanding does not require an exhaus-
tive coverage of the language-described pixel-level space-
time information, making it more adaptable under the cur-
rent data limitations.

Looking ahead, advancing output-level spatiotemporal
grounding in Video LLMs holds significant promise for
improving their generalization, reliability and fine-grained
spatiotemporal reasoning skills. We encourage future work
to pursue this direction by leveraging more accurate spatial-
temporal annotations aligned with language, ideally en-
abled by an enhanced, scalable, and automated data gen-
eration pipeline.



Figure 6. Example of Strefer-Synthesized Instruction-Response Pairs (left) and Pseudo-Annotated Video Metadata (right). Each
instruction begins with the prefix: “Please answer the following question about the <region>” (and the prefix is omitted in the figure). For
each instruction-response pair, the boundary of the object mask referred to by <region> is shown next to the pair and highlighted in color.
Strefer automatically clips the video into segments and pseudo-annotates the video metadata—including active entities, their locations
(as masklets), and action timelines—for complex video scenarios, such as scenes containing multiple entities of the same category, and
cases where entities do not appear in the first frame, or temporarily exit and re-enter the frame; based on the video metadata, it generates
instruction-response pairs, requiring no legacy annotations. Though current implementation of Strefer does not any use proprietary
models, without the need to annotate large volumes of new videos, instruction data from Strefer empowers models for space-time referring
and spatiotemporal reasoning (ref. Table 2, 3, and 4).



Figure 7. Example of Strefer-synthesized instruction-response pairs (bottom) and video metadata (top).



Prompt = “child in a white T-shirt.child in a pink top.dog with a red leash.woman with ponytail.”

Video Frames

Ours

child in a white T-shirt child in a pink top dog with a red leash woman with ponytail

Prior Method - GroundedSAM2 [44]

child dog child woman

Figure 8. Qualitative Results for Referring Masklet Generation. In this video, our method accurately generates masklets corresponding
to the input referring expressions. In contrast, GroundedSAM2 [44] fails to differentiate between the two children and also fails to detect
and track the woman, who appears midway through the video and occupies only a small portion of the frames.



Prompt = “man in the grey shirt.man in the black jacket.”

Video Frames

Ours

man in the grey shirt man in the black jacket

Prior Method - GroundedSAM2 [44]

man man

Figure 9. Qualitative Results for Referring Masklet Generation. In this video, our method accurately generates masklets corresponding
to the input referring expressions. In contrast, GroundedSAM2 [44] fails to differentiate between the man in the grey shirt and the man in
the black jacket.



Prompt = “bride.groom.bridesmaid.officiant.”

Video Frames

Ours

bride groom officiant bridesmaid

Prior Method - GroundedSAM2 [44]

groom officiant groom bride bridesmaid

Figure 10. Qualitative Results for Referring Masklet Generation. Our method accurately generates masklets corresponding to the input
referring expressions. In contrast, GroundedSAM2 [44] converts the input text prompt into the class names groom officiant, groom, bride,
and bridesmaid. GroundedSAM2 then fails to detect the bridesmaid in the video, while incorrectly assigning the class name bridesmaid to
the actual bride, groom to the officiant, and groom officiant to the groom.



Prompt = “woman on a bicycle.man in a blue shirt.man in a white shirt.man in a black shirt.”

Video Frames

Ours

woman on a bicycle man in a blue shirt man in a black shirt man in a white shirt

Prior Method - GroundedSAM2 [44]

woman bicycle

Figure 11. Failure Results for Referrin Masklet Generation. Our method fails to consistently track the woman on a bicycle throughout
the video, while GroundedSAM2 [44] fails to detect, track, and differentiate the individuals referenced in the input text prompt. Videos
with heavy motion blur and long-range dependencies remain challenging to handle.



Please give a detailed description of the highlighted object <region> in the video.

The table in the video is a long, wooden table with a polished surface. It is situated in a formal setting, likely a courtroom or a meeting room. The 
table has several nameplates in front of it, indicating the positions of the individuals seated behind it.

The object in question is a man dressed in a suit and tie, seated at a desk. He is positioned on the left side of the image, with his back to the 
camera. Throughout the video, he remains seated, maintaining a composed and professional demeanor. His attire is formal, consisting of a dark 
suit, white shirt, and a tie. The man's posture is upright, and he appears to be engaged in a serious discussion or meeting. The background 
behind him is subdued, with a focus on the man and his immediate surroundings. 

The object in question is a table. Initially, it is seen with a man in a suit sitting at it, holding a cup. The table is positioned in a formal setting, likely a 
conference room or a meeting hall. The man appears to be engaged in a discussion or a meeting, as he is seated and holding a cup, possibly containing 
a beverage. The table itself  is wooden and has a polished f inish, with a few nameplates and papers placed on it, indicating a formal meeting or 
conference. 

Ground Truth

Baseline

Figure 12. Qualitative Results. This sample is drawn from VideoRefer-BenchD, designed to assess a model’s performance on the task of
Mask-Referred Regional Description. The boundary of the region referred to by the mask in this sample is highlighted in purple. While
the video includes several individuals as prominent foreground elements, the masklet specifically refers to the table, not the people. The
baseline model, however, fails to interpret the mask correctly and mistakenly answers that the referred object is a man. In contrast, the
model trained on Strefer-generated data accurately identifies the masklet-referred region as a table.



Please give a detailed description of the highlighted object <region> in the video.

The parking lot is a large, open area with multiple cars parked in designated spaces. The surface is smooth and appears to be made of asphalt. 
The parking lot is bordered by orange and white barriers on one side, and there are several orange cones placed throughout the area. 

A car is parked on the left side of the road. It is a white vehicle with a blue stripe running along its side. The car is stationary and does not appear 
to be in motion.  

The object in question is a parking lot. Initially, it is depicted as a vast, open space with a smooth, dark asphalt surface. The parking lot is bordered by a 
series of orange and white barriers, which are arranged in a neat, parallel fashion, creating a clear demarcation for the area. The barriers are evenly 
spaced, ensuring a uniform appearance. 

Ground Truth

Baseline

Figure 13. Qualitative Results. This sample is drawn from VideoRefer-BenchD, designed to assess a model’s performance on the task of
Mask-Referred Regional Description. The boundary of the region referred to by the mask in this sample is highlighted in purple. The
baseline model tends to have a foreground bias, fails to interpret the masklet correctly, and mistakenly responds that the referred region is
a car. In contrast, the model trained on Strefer-generated data accurately identifies the masklet-referred region as a parking lot.

What action is <object0><region> performing? Pick the best option:
(A) Sitting and eating
(B) Turning around and moving to the right
(C) Lying down to eat
(D) Walking to the leftmost part

(B) Turning around and moving to the right

(A) Sitting and eating (B) Turning around and moving to the right

Ground Truth

Baseline

Figure 14. Qualitative Results. This sample is drawn from VideoRefer-BenchQ, designed to assess a model’s performance on the task
of Mask-Referred Regional QA. The boundary of the region referred to by the mask in this sample is highlighted in purple. The model
trained on Strefer-generated data correctly identifies the masklet-referred region and action.



What action is <object0><region> performing? Pick the best option:
(A) Sitting on the bicycle
(B) Pushing the bicycle around in a circle
(C) Riding the bicycle
(D) Fixing the bicycle

(B) Pushing the bicycle around in a circle

(D) Fixing the bicycle (B) Pushing the bicycle around in a circle

Ground Truth

Baseline

Figure 15. Qualitative Results. This sample is drawn from VideoRefer-BenchQ, designed to assess a model’s performance on the task of
Mask-Referred Regional QA. The boundary of the region referred to by the mask in this sample is highlighted in purple. In this sample,
the model must demonstrate fine-grained spatiotemporal action understanding due to the small size of the mask and the subtle motion
differences between the correct and negative options. The model trained on Strefer-generated data successfully identifies both the region
referred to by the masklet and the corresponding action.

What action is <object1><region> performing? Pick the best option:
(A) Sitting still
(B) Climbing a cat tree
(C) Chasing a cat teaser
(D) Sleeping

(B) Climbing a cat tree

(C) Chasing a cat teaser (B) Climbing a cat tree

Ground Truth

Baseline

Figure 16. Qualitative Results. This sample is drawn from VideoRefer-BenchQ, designed to assess a model’s performance on the task
of Mask-Referred Regional QA. The boundary of the region referred to by the mask in this sample is highlighted in purple. The model
trained on Strefer-generated data correctly identifies the masklet-referred region and action.



How does <object1><region>'s position relate to <object3><region>'s position? Pick the best option:
(A) <object1> is in front of <object3>
(B) <object1> is behind <object3>
(C) <object1> is beside <object3>
(D) <object1> is not visible in relation to <object3>  

(A) <object1> is in front of <object3>

(B) <object1> is behind <object3> (A) <object1> is in front of <object3>

Ground Truth

Baseline

Figure 17. Qualitative Results. This sample is drawn from VideoRefer-BenchQ, designed to assess a model’s performance on the task
of Mask-Referred Regional QA. This sample presents a multi-masklet scenario, with two masklets referring to two different individuals.
The boundary of the <object1> region is highlighted in purple, and <object2> is highlighted in green. The model trained on Strefer-
generated data correctly answers this multi-masklet reference question by effectively analyzing the relationship between the two masklets
within the video context.

How does the position of <object1><region> relate to <object2><region>? Pick the best option:
(A) <object1> is above <object2> on the tree
(B) <object1> is below <object2> on the tree
(C) <object1> and <object2> are on the same branch
(D) <object1> is on a different tree than <object2>  

(A) <object1> is above <object2> on the tree

(B) <object1> is below <object2> on the tree (A) <object1> is above <object2> on the tree

Ground Truth

Baseline

Figure 18. Qualitative Results. This sample is drawn from VideoRefer-BenchQ, designed to assess a model’s performance on the task
of Mask-Referred Regional QA. This sample presents a multi-masklet scenario, with two masklets referring to two different individuals.
The boundary of the <object1> region is highlighted in purple, and <object2> is highlighted in green. Kindly zoom in, as the regions
are relatively small and may be difficult to discern. The model trained on Strefer-generated data correctly answers this multi-masklet
reference question by effectively analyzing the relationship between the two masklets within the video context.



Does the following description accurately ref lect what happens in the video between 00:02:00.000   and 00:02:30.000?
Description: Overhead shots of a breakfast spread. Respond with 'Yes'  or 'No'  only. 

Yes. No.

Ground Truth

Baseline

No.

Does the following description accurately ref lect what happens in the video between 00:00:06.000 and 00:00:20.000?
Description: Overhead shots of a breakfast spread. Respond with 'Yes'  or 'No'  only. 

Yes. Yes.

Ground Truth

Baseline

Yes.

Figure 19. Qualitative Results. This sample is drawn from QVHighlights, using our repurposed task designed to assess a model’s per-
formance on Timestamp-Referred Video QA. The segment boundaries corresponding to the timestamps in the first and second questions
are highlighted in purple and green, respectively. The model trained on our Strefer-generated data correctly answers both questions,
demonstrating superior understanding of precise moments and segments in videos compared to the baseline.

Does the following description accurately ref lect what happens in the video between 00:02:00.000  and 00:02:24.000?
Description: Groups of monkeys are roaming around outside. Respond with 'Yes'  or 'No'  only.

No. Yes.

Ground Truth

Baseline

Yes.

Figure 20. Qualitative Results. This sample is drawn from QVHighlights, using our repurposed task designed to assess a model’s
performance on Timestamp-Referred Video QA. The boundary of segment corresponding to the timestamps in the question is highlighted
in purple. The model trained on our Strefer-generated data correctly answers the question, demonstrating superior understanding of precise
moments and segments in videos compared to the baseline.



Does the following description accurately ref lect what happens in the video between 00:01:28.000  and 00:01:42.000?
Description: People in a crowd during a meting raising their hands. Respond with 'Yes'  or 'No'  only.

No. Yes.

Ground Truth

Baseline

Yes.

Figure 21. Qualitative Results. This sample is drawn from QVHighlights, using our repurposed task designed to assess a model’s
performance on Timestamp-Referred Video QA. The boundary of segment corresponding to the timestamps in the question is highlighted
in purple. The model trained on our Strefer-generated data correctly answers the question, demonstrating superior understanding of precise
moments and segments in videos compared to the baseline.

Please give a detailed description of the highlighted object <region> in the video.

The boy in the video is wearing a light-colored shirt. He is sitting on the right side of a table and appears to be playing a card game. He holds a 
card in his right hand and points his left hand toward the woman across the table. His attention is focused on the game and he appears to be 
actively participating in the activity. 

A woman is sitting at a table, holding a deck of cards. She is wearing a gray sweater and has blonde hair. The table is white and has a marble 
pattern. There is a large mirror behind her, ref lecting the room. The woman is shuff ling the cards, and her hands are in motion as she deals them.

A person is sitting at a table, holding a deck of cards. The individual is wearing a gray sweater and has blonde hair. The person is engaged in a card 
game, with their hands actively manipulating the cards. The table is white and has a marble- like pattern. In the background, there is a large mirror 
ref lecting the scene, and a lamp is visible on the left side of the table. The person's focus is on the cards, and they appear to be in the midst of a game, 
possibly a card game like "Cards Against Humanity"  or a similar game. The person's movements are deliberate and focused, indicating their engagement 
in the game. 

Ground Truth

Baseline

Figure 22. Failure Results. This sample is drawn from VideoRefer-BenchD, designed to assess a model’s performance on the task of
Mask-Referred Regional Description. The boundary of the region referred to by the mask in this sample is highlighted in purple. The
masklet is intended to refer to the boy on the right, but he is mostly out of view, while a woman appears prominently in the center of the
video. Both the baseline model and the model trained on Strefer-generated data fail to correctly interpret the masklet.



Please give a detailed description of the highlighted object <region> in the video.

The woman in the video is engaged in cooking activities in the kitchen, wearing white clothes and a blue hat, standing in front of the counter 
cutting vegetables. 

A woman in a black coat is standing in a kitchen, facing a woman in a white coat. She is engaged in cooking, with a pot on the stove in front of 
her. The woman in the black coat is focused on her task, while the woman in the white coat is also involved in the cooking process. The kitchen 
setting is well- lit, with various kitchen utensils and ingredients visible on the countertop. The woman in the black coat remains stationary, while 
the woman in the white coat occasionally moves around, possibly adjusting the stove or handling other cooking tasks. 

A woman in a white sweater and blue hat is standing in a kitchen. She is engaged in cooking activities, using a frying pan on the stove. Her attire is 
casual, with a white sweater and a blue hat, and she appears focused on her task. The kitchen setting is well- lit, with various kitchen utensils and 
ingredients visible in the background. The woman's movements are deliberate as she stirs the contents of the frying pan, indicating her active 
involvement in the cooking process.

Ground Truth

Baseline

Figure 23. Failure Results. This sample is drawn from VideoRefer-BenchD, designed to assess a model’s performance on the task of
Mask-Referred Regional Description. The boundary of the region referred to by the mask in this sample is highlighted in purple. While
the model trained on Strefer-generated data correctly identifies that the masklet refers specifically to the woman in the white sweater, it
incorrectly responds that her action is “frying pan”.



Does the following description accurately ref lect what happens in the video between 00:00:00.000 and 00:00:22.000?
Description: Adorable dog and cat having photo session with asian girl. Respond with 'Yes'  or 'No'  only.

Yes. No.

Ground Truth

Baseline

Yes.

What is happening between 00:00:00.000  and 00:00:22.000?

A dog is lying on a bed with a cat.

Figure 24. Failure Results. This sample is drawn from QVHighlights, using our repurposed task designed to assess a model’s performance
on Timestamp-Referred Video QA. The boundary of segment corresponding to the timestamps in the question is highlighted in purple.
Although the model trained on our Strefer-generated data fails to answer the question correctly, it does accurately recognize that the
segment shows a dog lying on a bed with a cat. We suspect the model’s failure stems from its disagreement with the description, which is
not fully grounded in the visual content—for example, the video segment does not clearly depict a photo session involving the dog, the cat,
and the girl.



Type ID & Task Frames Source Format Example Question-Answer Pair Mask-Refer Version
1. Ask the model to describe
the behavior of entities that are
present in a segment of the
video.

Frames are
extracted only
from the seg-
ment of the
video.

Template OE Question: <video>What is happening to the
woman?
Answer: The woman is engaged in a dance
with the man, involving spins and turns. She
is lifted off the ground by the man during the
dance.

Question:<video>Please answer the follow-
ing question about the <region>. What is
happening to her?
Answer: The woman is engaged in a dance
with the man, involving spins and turns. She
is lifted off the ground by the man during the
dance.

2. Ask the model to describe
the behavior of entities that are
not present in a segment of the
video; the model should re-
spond with uncertainty (e.g.,
“Sorry, I’m not sure”).

Frames are
extracted only
from the seg-
ment of the
video.

Template OE Question: <video>What is currently hap-
pening to the person in a green hoodie?
Answer: The person in a green hoodie seems
to be not clearly visible.

N/A

3. Ask a yes/no question about
the presence of an entity in
a segment of the video; if
present, the model should de-
scribe its behavior; if absent,
the model should respond with
uncertainty.

Frames are
extracted only
from the seg-
ment of the
video.

Template OE Question: <video>Were you able to see a
woman in a black jacket?
Answer: Yes. The woman walks towards the
child seated on the sofa.

N/A

4. Ask a yes/no question about
the presence of an entity in
a segment of the video; the
model should respond with a
concise “Yes” or “No” only.

Frames are
extracted only
from the seg-
ment of the
video.

Template OE Question:<video> Is there a woman in a
black jacket? Answer only “Yes” or “No”.
Answer: Yes.

N/A

5. Ask the model to iden-
tify the correct temporal or-
der in which entities first ap-
pear in the video from multi-
ple choices.

Frames are
extracted from
the full video.

Template MCQ Question:<video> Which order shows their
first appearance in the video?
(A) child interacting with the plant bed, child
holding a bag and a toy, child walking across
the lawn
(B) child holding a bag and a toy, child ap-
proaching a plant bed, child interacting with
the plant bed
(C) child approaching a plant bed, child hold-
ing a bag and a toy, child interacting with the
plant bed
(D) child walking across the lawn, child hold-
ing a bag and a toy, child interacting with the
plant bed
Answer: (B)

N/A

6. Ask the model to describe
the behavior of entities that
may or may not be present in
a specific time range of the
video; the question refers to a
time range.

Frames are
extracted from
the full video.

Template OE Question:<video> Could you explain what
the girl in the yellow coat is doing between
00:00:05 and 00:00:12.210?
Answer: The girl in the yellow coat is care-
fully watering plants in a garden.

Question:<video>Please answer the follow-
ing question about the <region>. Could you
explain what she is doing between 00:00:05
and 00:00:12.210?
Answer: The girl in the yellow coat is care-
fully watering plants in a garden.

7. Ask the model to describe
what happened generally or to
a specific entity during a spe-
cific time range in the video;
the question refers to a time
range.

Frames are
extracted from
the full video.

LLM OE &
MCQ

Question:<video> What else did the woman
interviewing the man do between 00:00:00
and 00:00:07.007?
Answer: The woman interviewing the man is
talking as well.

Question:<video>Please answer the follow-
ing question about the <region>. What
else did she do between 00:00:00 and
00:00:07.007?
Answer: The woman interviewing the man is
talking as well.

8. Ask the model to describe
what happened generally or
to a specific entity during a
coarse time range in the video
(e.g., throughout the video, be-
ginning, middle, or end).

Frames are
extracted from
the full video.

LLM OE &
MCQ

Question:<video> What else did the woman
interviewing the man do in the beginning of
the video?
Answer: The woman interviewing the man is
talking as well.

Question:<video>Please answer the follow-
ing question about the <region>. What else
did she do in the beginning of the video?
Answer: The woman interviewing the man is
talking as well.

9. Ask the model to identify
when a specific behavior or
event occurs within the video;
expect the model to answer
with a coarse time range in
the video (e.g., throughout the
video, beginning, middle, or
end).

Frames are
extracted from
the full video.

LLM OE &
MCQ

Question:<video> During which part of the
video was the child in pink dress riding a tri-
cycle?
Answer: The beginning.

Question:<video>Please answer the follow-
ing question about the <region>. During
which part of the video was this person rid-
ing a tricycle?
Answer: The beginning.

10. Ask the model to de-
scribe the behavior of an en-
tity before/during/after some-
thing else occurs.

Frames are
extracted from
the full video.

LLM OE &
MCQ

Question:<video> What is the adult doing
while the child is riding a tricycle?
Answer: The adult is watching and walking
behind the child.

Question:<video>Please answer the follow-
ing question about the <region>. What is he
doing while the child is riding a tricycle?
Answer: The adult is watching and walking
behind the child. -

11. Ask the model to identify
the entity involved before/dur-
ing/after something else oc-
curs.

Frames are
extracted from
the full video.

LLM OE &
MCQ

Question: Who is walking behind the child in
blue while the child is riding a tricycle?
Answer: An adult wearing a black shirt.

Question:<video>Please answer the follow-
ing question about the <region>. Who is
walking behind this child while the child is
riding a tricycle?
Answer: An adult wearing a black shirt.

Table 7. Details of Strefer-synthesized video instruction data. The table details the question task types, their visual inputs, QA
generation sources, formats, examples, and the mask-referring versions of the QAs. ‘OE’ denotes open-ended QA, and ‘MCQ’ indicates
multiple-choice QA.
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