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Abstract

Event sensors offer high temporal resolution and high dy-
namic range visual sensing which makes them appealing for
visual simultaneous localization and mapping (VSLAM). In
this work, we investigate event-based VSLAM for the sce-
nario where a static event camera observes an object that
is undergoing an unknown spinning motion. Geometrically,
the setting is equivalent to a static object that is observed
by an event camera that is orbiting around the object with
unknown orbital parameters. We exploit this duality to de-
velop an algorithm called eSpinSLAM. Key components of
eSpinSLAM are an online event-only feature detection and
tracking mechanism and a continuous-time back-end that
can incrementally reconstruct the object and estimate the
orbital motion. The problem geometry not only permits a
camera state representation with a bounded number of pa-
rameters that can support infinite time horizon operation,
but also enables effective loop closure detection and drift
mitigation via spinning frequency estimation. Results on a
real event dataset validate the improved feature tracking,
higher reconstruction accuracy and greater throughput of
eSpinSLAM over existing event-based 3D vision methods.

1. Introduction

Visual simultaneous localization and mapping (VSLAM)
aims to concurrently recover the scene structure and poses
of a camera that observes a scene. Emphasis is placed on
online incremental operation such that the results can con-
tribute to downstream tasks such as robotic interaction and
navigation. Recently, event cameras have been used for VS-
LAM due to several advantages such as high temporal res-
olution and dynamic range [18]. However, event-based VS-
LAM is generally less mature than frame-based VSLAM,
thus the former is very much an active research area.

In this paper, we investigate event-based VSLAM for the
scenario where a static event camera observes a target ob-
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Figure 1. Live system operation: a static event camera observes
a spinning object (bottom left), the front-end tracks features (top
left) which the back-end uses to estimate both the structure of the
object and the motion parameters (right). See supplementary video
eSpinSLAM Demo .mp4 for a demonstration.

ject spinning at a constant angular velocity; see Fig. 1. We
assume that the spinning motion of the object is due to a
phenomenon not under the control of the observer, such as
low-gravity tumble [46] and accidental spin [8]. The fact
that the unknown spinning motion and object structure need
to be estimated makes this a bona fidle VSLAM problem.
While of fundamental interest in its own right [8, 28],
VSLAM of spinning objects is relevant to robotic per-
ception applications such as visual servoing and grasp-
ing [31, 34, 49], and spacecraft rendezvous and dock-
ing [5, 17, 46]. The usage of an event camera is motivated
by the fact that the recurrent spinning motion continuously
triggers edge features that are useful to VSLAM at a high
temporal rate [19], thereby supporting responsive interac-
tions. If the background is static w.r.t. the camera, no events
are triggered by the background which greatly simplifies
data association. Moreover, the energy efficiency of event
sensors makes them attractive for space applications [25].
Geometrically, observing a spinning object using a static
camera is equivalent to observing a static object using a
camera that orbits around the object [16]. We exploit this
duality to formulate a continuous-time orbital motion model
with a bounded number of motion parameters, which then
leads to a novel VSLAM algorithm called eSpinSLAM. Our



algorithm can process the live event stream at high through-
put to estimate on-the-fly a semi-dense point cloud of the
object and the relative orbital motion. Key components of
eSpinSLAM include:
An online event-only feature tracking and data associa-
tion front-end, adapted for asynchronous event streams.
A continuous-time back-end optimization framework for
real-time incremental reconstruction and pose estimation.
A novel loop closure mechanism via frequency estima-
tion that exploits the recurring nature of spinning objects
to minimize drift in long-term operation.
Robust outlier management, landmark association, and
track management strategies to enable scalable, indefinite
runtime without memory blow-up.
When executed over a long term, eSpinSLAM incremen-
tally reconstructs and refines the output structure; see sup-
plementary video eSpinSLAM Demo .mp4 for a demo.
The closest work to ours is event-based structure-from-
orbit (eSfO) [16]. Due to using an over-parameterized mo-
tion model and computationally costly subroutines (e.g.,
feature detection and tracking, COLMAP [43] for initializa-
tion), eSfO is fundamentally incapable of online operation.
The key components of eSpinSLAM listed above not only
enable its throughput to be orders of magnitude higher than
that of eSfO, the reconstruction accuracy and long-term sta-
bility of eSpinSLAM are also greater than eSfO’s, based on
results on the TOPSPIN dataset [16] (see Sec. 5).

2. Related work
2.1. Event-based VSLAM and visual odometry

Event cameras provide high temporal resolution sensing
with higher dynamic range. This has made them useful
for VSLAM applications where conventional frame-based
cameras struggle. Many works have used an event camera
in conjunction with other sensing modalities to provide ro-
bust VSLAM solutions. EDS [23] paired an event-camera
with a frame-camera to enable camera motion estimation in
the blind time between frames for direct sparse odometry.
Similarly, Ultimate SLAM [47] combined frames and IMU
with event sensing for applications in high-speed scenar-
ios. Finally, since many event cameras incorporate IMUs,
several works have also developed paired event and IMU
VSLAM systems [7, 20, 48].

Recent works have also explored methods for event-only
motion estimation and structure recovery. DEVO [30] is
a monocular, event-only Visual Odometry (VO) system that
leverages a novel deep learning-based patch selection mech-
anism to accurately track camera motion. An earlier work,
EVO [42], recovers structure and motion from a monocular
event camera via edge map alignment. Event-only rotation
estimation was explored in CMax-SLAM [21], which lever-
ages contrast maximization to build a SLAM system. Using
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lines as the geometric primitive, [4] demonstrated an event-
only parallel tracking and mapping system using a Kalman
filter that can reconstruct a sparse line-based representation
of a scene. eSfO [16] recovers the sparse structure and mo-
tion of a spinning object using a single event camera, but
can only provide estimates offline. Despite all this, monoc-
ular event-only VSLAM is still a topic of active research.

2.2. Vision-based navigation in space

The success of ground-based SLAM and pose estimation
methods have motivated their application to space-based
environments and spacecraft relative navigation. Methods
for autonomous mapping of asteroids [14, 39], spacecraft
rendezvous and close-proximity operations [13, 38, 40, 45],
and pose estimation [6, 29, 37] have been explored using
conventional frame-based cameras. As the number of ob-
jects in orbit grows, there is a greater need for in-orbit per-
ception for vision-based navigation.

Event cameras provide low-powered high fidelity on-
board sensing and have been utilized for various space ap-
plications including star trackers [9, 36], spacecraft land-
ing [33, 44] and space situational awareness [1, 11]. Meth-
ods for event-based satellite pose estimation [26, 27, 41]
have shown better perception in the harsh space conditions.

By tackling a novel problem setting with a compelling
application, our work pushes the boundaries of vision-based
navigation for space. Our eSpinSLAM algorithm, which
can achieve monocular event-only long-term spinning ob-
ject reconstruction, also represents a major innovation in
event-based 3D perception.

3. Problem statement

In eSpinSLAM, a static event camera observes an object
x that is spinning at a constant angular velocity, taking
trev Seconds to complete one revolution. This is mathe-
matically equivalent to the dual formulation (see [16] and
proof therein) of a static target observed by an orbiting
camera. Under this dual view, the executed orbit of the
event camera traces out a circle during the time ¢,..,, which
lies within the orbital plane A; see Fig. 2. Let the data
stream from the event camera be & {ei}NE | where
each e; = (t;, z;, y;, p;) consists of the event pixel-location
(z;,y;), the timestamp (¢;) of when the event occurred and
a binary polarity (p; € {0,1}) indicating the direction of
intensity change. Note that the length Ny of £ could be oo,
corresponding to the case where the object x spins perpet-
ually. The aim of eSpinSLAM is to recover a sparse point
cloud X = {x¥ € R?’};V:"l in the world reference frame
w representing x, and the orbit parameters (defined below).

3.1. Orbital motion model

As the camera executes orbital motion around the object,
the task of the motion model is to provide a pose generation
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Figure 2. L: eSfO [16] parameterization where the orbital param-
eters are ¢, r, R, i, 0, and f (not shown). R: eSpinSLAM pa-
rameterization where the world frame w is at the center of the
circular orbit and @ and n coincide with the x and z direction of
w, ie. iand k, respectively. The orbital parameters are just Ro
and f (not shown).

function which can be evaluated at a continuous-time ¢ to
obtain the corresponding full 6-DoF pose of the camera at
t. As opposed to discrete poses used in factor graph for-
mulation [46], the pose generation function approach aligns
with a continuous-time SLAM formulation [10].

3.1.1. eSfO motion model

The orbital motion model presented in eSfO [16] (see

Fig. 2L) includes the following parameters:

» ¢ € R?: center of the circular orbit in w.

e r € R: the radius of the orbit.

e f € R: the frequency at which the object rotates (Hz),
ie, f=1/tre.

* Ry € SO(3): orientation of the camera relative to A.

* n € R3: the orbital axis, unit vector normal to A

* 0 € R3 unit vector in A pointing towards the position of
the camera at the start of recording, i.e., at time ¢.

The position of the camera at any given time ¢ is

tY(¢;0) = rcos 2w ft)a+ rsin 2nft)v +c¥, (1)

where V =10 x tand § = {c,r, f,n,a}. Note that ¢ is a
continuous time value in the range [t1,tn,].

3.1.2. eSpinSLAM motion model

The eSfO motion model can be greatly simplified without

loss of generality (see Fig. 2R) as follows:

* Center the orbit at the origin of w, i.e., set ¢ = Q3.

* Align nn and 01 with the z and x axes of w, i.e., set n = k
and @ = i.

* Recognizing that r is unobservable in the monocular
case, fix r to an arbitrary value; see Table 1.

With the above simplification, (1) can be rewritten as

£ (t; f) = rcos (2m f1)i + rsin (27 f1)]. 2)

The unknown motion parameters thus reduce to f and Ry.
The continuous-time pose of the camera in the manifold of
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rigid transformations SE(3) is given by

T!, = T, T}, 3)

which takes a point x* in the world frame w and projects it
to the image plane at time ¢, and

positions the camera center on the circle and orients the

camera’s principal axis to point at ¢, with r* = ¢ —

tY(t; f), ¥ = 1* x kand #¥ = £* x #*. The rigid trans-
Ry

formation
[01X3 }

rotates the camera relative to the orbital plane A to point
towards the target and is not time-dependent.
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3.2. Strengths and weaknesses of the motion model

The assumption of a circular orbit bounds the total number
of parameters in eSpinSLAM to 4+ 3Nx (Sec. 3.1.2), even
if the camera undergoes a perpetual orbit that generates an
infinitely long event stream £. The motion propagator (2)
also enables continuous-time SLAM [10], which aligns well
with the usage of an event sensor.

On the other hand, the apparent camera motion could be
more complex than a stationary circular orbit, e.g., the orbit
could drift, wobble, or precess. Precession of the objects
orbital axis n, for example, leads to the rotation of the or-
bital plane A. The ability to execute eSpinSLAM (Sec. 4)
online and long-term allows to track the orbit based on the
most recent observations and account for transients in the
orbit. Dealing with more complex motions (e.g., preces-
sion, change in angular velocity) is left as future work.

4. eSpinSLAM algorithm

The eSpinSLAM pipeline (Fig. 3) consists of two parts: the
front-end, that abstracts the sensor stream & into a set of
feature track hypothesis, and the back-end, that operates on
feature tracks to estimate the scene structure and motion pa-
rameters.

4.1. Front-end

Instead of considering the streaming nature of the event in-
put, eSfO [16] assumes that the entire event stream is avail-
able for processing from the start, i.e. its a offline method.
Such an approach is infeasible for an online incremental
method such as eSpinSLAM. Therefore, we restructure the
eSfO front-end to operate at the “event chuck” C C &
granularity. The eSpinSLAM front-end is organized into
three event-chunk-driven tasks; see Fig. 3. The process be-
gins with the camera driver pushing an event chunk to the
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Figure 3. The eSpinSLAM pipeline: event chunks (C) are taken as input to the method, which estimates a sparse point cloud of the object

(X™) and its motion parameters (f, Ro).

front-end after a set number of events have been triggered
(IC| = 1,000 for Prophesee’s Metavision SDK driver). The
first stage applies eFAST corner detection [35] on C to ex-
tract a set of corner events F C C. The second stage
performs density filtering on F [16] to generate a subset
G C F. Density is defined as [16]

> I(pi = py),

eq€F;

1

where F; C JF consists of events within distance A
from e;, p, is the polarity of a neighboring event ¢, =
{tq: T4, Yq, Pq}, and Lreturns 1 for matching polarities, zero
otherwise. Density based filtering is required to normal-
izes the variation in number of events generated for each
polarity as the sensitivity for positive and negative events
is different for the same intensity change [19]. A corner
e; with density score D(e;) less than the mean pp is re-
moved. This enables identification of event corner clusters
that can be reliably grouped together over time and space.
Finally, HDBSCAN [32] is employed to spatio-temporally
cluster the events in G to generate a set of candidate track-
lets M = {M, C g}ﬁvgl, where each tracklet M contains
spatio-temporally adjacent events.

In eSpinSLAM, the tracklets M from the latest event
chunk are accumulated into and merged with a global pool
of tracks H = {H, }*,, where each H,, = {e,, € £} con-
tains spatio-temporally adjacent events, potentially across
multiple event chunks. To avoid the unbounded increase
of H, subsequent landmark association and track forgetting
steps (Secs. 4.2.6 and 4.2.7) will be performed.

4.2. Back-end

As soon as the global pool of tracks H is updated, the back-
end of eSpinSLAM is triggered to re-estimate the orbit pa-
rameters (f, Rg) and the sparse structure X*. f is required
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for system initialization and is closely related to loop clo-
sure detection, as explained below.

4.2.1. Frequency estimation and loop closure

VSLAM systems accumulate drift over time which can only
be corrected by detecting a revisit to a previously observed
part of the world, aka, “loop closure detection”. It is es-
sential for any long term VSLAM system to correctly close
loops to prevent the growth of otherwise unbounded drift.

Contrary to the general VSLAM setting where loop clo-
sure detection is opportunistic, eSpinSLAM enjoys ample
opportunities to close loops due to the cyclical nature of
the problem. Indeed, the frequency f not only influences
the propagation of the camera motion (2) and by exten-
sion structure estimation, it also informs when the camera
completes a revolution and previous object features are re-
observed. Determining f is equivalent to loop closure de-
tection in eSpinSLAM.

We estimate the period ¢,.., = 1/ f by finding the tempo-
ral shift that leads to maximal spatial alignment. The cumu-
lative events that exist in the current global pool of tracks H
are

A=UNrH, ={ep € €| Just.oep € Hu} (D)
Defining the “midlife” of H as
) Al 4]
7=0.5|(min ¢ | + [ max tx | |, (8)
k=1 k=1

we partition A into two subsets
Ar={em €Al tm <7}, A ={en € Aty > 7},

based on whether the events were triggered before or after
the midlife. The orbital period t,., is estimated as

[Agl | A, ITm In
t:ev = argmin min Ym — | Yn )
n=
brev =1 b + trew tn

2



using a 1D variant of the iterative closest point (ICP) [3]

algorithm. The estimated frequency is thus f* = 1/t*,,.
This process is executed whenever H is updated. Loop

detection is deemed successful when the last X frequency

estimations have a sample standard deviation of less than o.

4.2.2. Structure and camera orientation optimization

The continuous-time formulation of eSpinSLAM obviates
the need to accumulate event frames, and allows each event
e, € H, in each track H,, to contribute to the estimation.
For each e, = (t,, Ty, Yu, Dv ), @ virtual camera with pose

w-[2% 4]

is defined based on the motion model (3) with the frequency
fixed to f*. Recall that (10) also depends on Ry. Then, by
regarding each track #,, as events generated by the same
world point x?7, the sum of reprojection errors is minimized
to estimate the structure and camera orientation

ty
Rw
01x3

t
ty

1 (10)

Ny [Hu
min (KR xY + Ktiv) — {xv} >,
RO,{,‘;,};MZ%( KRG+ K - |7

(1)
where 7(+) is the perspective projection function, K is the
intrinsic calibration matrix, and p is an M-estimator to pro-
vide robustness against outliers. In total, 3 + 3Ny variables
are optimized, which is solved using GTSAM [12]. Opti-
mization runs every ¢/ f seconds to ensure sufficient new
information is available for state update.

4.2.3. Initialization

Unlike eSfO [16] which relies on COLMAP [43] for boot-
strapping, eSpinSLAM does not require external routines
for initialization. The frequency can be estimated as in
Sec. 4.2.1 from the tracks alone. In the very first run
of (11), the world points are initialized to zero, i.e., {x¥
03><1}7[j£1’ and Ry is set to I3y 3, while f is fixed to f*.

4.2.4. Landmark triangulation

In subsequent runs of the back-end, triggered by updates to
‘H, the world points for newly acquired or updated tracks are
initialized by multiview triangulation [22], based on virtual
camera poses that are propagated forward using the motion
model (3), f* and the most recently estimated Ry.

4.2.5. Outlier elimination

Tracks with fewer than NV, ., €vents are considered un-
informative and discarded. We also eliminate tracks whose
landmarks have a mean reprojection error greater than -.
Assuming that the scene contains a single object with no
background, points that are beyond a radius of r from
c” = 034, are also discarded as outliers. Note that the
latter assumption is due to the data collection routine (see
Sec. 5) and not a weakness of our method.
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4.2.6. Landmark Association

Tracks originating from a single world point might be
disconnected due to self-occlusion, leading to the recon-
struction of multiple world points. To reduce drift, such
world points need to be fused. When two reconstructed
world points x;;, and x;;, are within a predefined thresh-
old dfyse, the corresponding tracks are merged such that
Huy, = Hu, U Hy,. This fuses the two world points in the
next optimization.

4.2.7. Enabling infinite lifetime

To avoid an unbounded pool of tracks H during infinite op-
eration and reduce the influence of stale measurements, old
tracks are progressively removed from . We calculate the
age of a track H,, as the time elapsed since the most recent

event in the track, i.e.,
> (IHu )
— | max t, | .
v=1

Tracks with age older than 0 f4,gettre, are discarded where
O forget 18 @ system hyper-parameter. Some tracks might
continuously be observed and could never become stale. We
additionally restrict the number of events from a particular
track that can be retained. A circular buffer of a pre-defined
length 0ctqin per track is maintained to which new events
are added. 0¢tqin 1S a hyper-parameter of the system.

Al

age(H,) = (max tr

k=1 (12)

4.3. Degeneracy

Degeneracy occurs in eSpinSLAM when the optical axis of
the camera is parallel to the axis of rotation n R, e.g.,
vertically downward pointing camera. This is analogous to
a purely rotating camera in SfM. For brevity, we assume no
degeneracy in our application scenario.

5. Experiments

Experiments are presented to demonstrate the efficacy of
eSpinSLAM in frequency estimation, throughput, point
cloud reconstruction, and long-term operation. All ex-
periments were run on a machine with an Intel 15-8400
CPU (which has six cores) and 32GB of RAM. The live
demonstration (eSpinSLAM Demo .mp4) used a Prophe-
see EVK4 event camera.

5.1. Dataset

eSpinSLAM is formulated to recover the structure and or-
bital parameters for a spinning object viewed by a static
camera. Therefore, we evaluate eSpinSLAM on the TOP-
SPIN [15] dataset which contains six spinning objects on a
turntable, at three rotational speeds, observed from a static
event camera.



Figure 4. Sample images of eSpinSLAM online operation: while the camera observes the spinning object (left), which is equivalent to the
camera orbiting the static objext [16], features are tracked by the front-end (top row) which are then used by the back-end to estimate the
orbit and reconstruct the point cloud (bottom row). See attached supplementary video (eSpinSLAM _Demo .mp4).

Standard deviation f estimation o 1073
Frequency estimation samples N 20
Inlier threshold for p 2
Forgetting threshold ot get 3
Circular buffer length 0,ctain 10°
Track length N, qtch 3
Orbit radius r 10
Maximum landmark mean reprojection error y 10
Landmark merge radius d e 0.01
Cadence of optimization € 0.1

Table 1. Hyperparameters of eSpinSLAM.

5.2. Hyperparameter settings

Table 1 lists the hyperparameters and their values used in
the experiments.

5.3. System throughput

Event-based sensing is asynchronous by design and lacks
the notion of a “frame rate”. Moreover, event rate varies
with scene motion, texture, lighting conditions and camera
resolution — making performance characterization difficult.
Previous methods report metrics such as a “real time fac-
tor” (compute time divided by the duration of the events)
to quantify performance, which is highly dependent on the
aforementioned factors. Instead, we argue that throughput
— the number of events processed per unit time — being
invariant to these factors, is a better performance metric.
Throughput measures a pipeline’s event processing capac-
ity enabling comparison between methods and complexity
between dataset scenes.

Fig. 5 depicts the throughput for various algorithms
(without any downstream processing) and datasets. The
higher throughput of both ETC and eSpinSLAM permits
high speed processing on the TOPSPIN dataset, whilst
HASTE struggles due to low throughput. eSpinSLAM
achieves consistent high throughput on TOPSPIN scenes
(Fig. 7).
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5.4. Frequency estimation

Frequency plays a critical role in eSpinSLAM and under-
pins reconstruction quality. We compare against FFT-based
frequency estimation presented in eSfO [16]. Fig. ©
demonstrates the advantage of loop closure based f estima-
tion where the frequency is recovered with high precision
and high accuracy. Since f directly affects the reconstruc-
tion quality, we demonstrate its effects on reprojection and
model-alignment error in Table 3.

5.5. Comparison against other methods

Table. 2 presents extensive comparisons against the closest
approach (eSfO [16]) and demonstrated consistent improve-
ment. eSfO operates offline, while eSpinSLAM operates
incrementally online and achieves about an order of mag-
nitude improvement in CAD model alignment accuracy.
We also compare against the original baseline (COLMAP
+ ETC Tracks) from [16]. Comparison against other
event-based methods such as EVO [42] was attempted but
failed due to the restricted motion setting of eSpinSLAM:
EVO needs a planar fronto-parallel scene for initializa-

ETC

The Event
Camera
Dataset

eSpinSLAM

EVO

TOPSPIN

Dataset B Dataset

B Feature Tracking
s VO
Hm VSLAM

HASTE

104

10° 106

Throughput (events/s)
Figure 5. Average throughput (log scale): event rate for various
algorithms; our ETC tracker front-end, eSpinSLAM, EVO [42],
HASTE [2], and datasets; Event Camera Dataset [24] and TOP-
SPIN [15].



Method Hubble SOHO TDRS Camera Dualshock Switch
Reprojection Error (px) |

COLMAP + ETC Tracks | 2.12 + 1.51 2.32 £+ 0.59 2.224+0.59 2.70+1.79 2.7540.82 2.25 +1.21

eSfO [16] 8.70 +8.31 18.25+10.23 11.02+8.21 5.784+3.01 5.12+4.266 23.91+17.03

EVO [42] - - - - - -

eSpinSLAM 3.25 + 3.01 2.99 +3.17 1.54 +0.20 198 +0.15 2.19+091 1.94 + 0.35
ICP Alignment RMSE (mm) |

COLMAP + ETC Tracks | 1.43 +0.59 7.52 +4.67 7.61+5.72 1.894+0.57 5.71+5.98 6.42 + 5.45

eSfO [16] 2.08 +0.411 4.20 + 3.21 3.95+239 0.51+034 2.97+2.88 5.52 + 5.56

EVO [42] — - - — - -

eSpinSLAM 0.92 + 0.71 0.56 + 0.41 0.66 £0.76 0.75+0.57 0.93 £ 1.02 0.83 + 0.66

Table 2. Comparison of Reprojection Error and ICP Alignment RMSE for various methods on the TOPSPIN [16] dataset. The results
are collated for each model present in TOPSPIN, where the mean and standard deviation for each metric are reported. EVO [42] failed to

initialize for all sequences.
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Figure 6. Cumulative distribution function (CDF) plots of fre-
quency estimation using loop closure (eSpinSLAM) in blue and
the FFT-based method from eSfO [16] in , for scenes in the
TOPSPIN dataset [16]. Ground truth f is presented in red. Loop
closure based estimates are both accurate and precise, with nearly
all estimates virtually identical to the ground truth.

tion, which is not compatible with eSpinSLAM’s problem
setting. State-of-the-art event-based VO methods such as
DEVO [30]—which only estimate the camera’s trajectory—
are also not viable as there is no common basis for compar-
ison: there is no reconstructed structure or estimated object
motion with which to compare.

Reprojection Error Reprojection error quantifies the
alignment between the set of tracks and the reconstructed
world points. In Table 2, eSpinSLAM leads to the least re-
projection error; however, it is followed closely by tracks
from ETC tracker used as input to a state-of-the-art bun-
dle adjustment pipeline (COLMAP [43]), which is a gen-
eral purpose SLAM backend and unaware of orbital mo-
tion. As expected, loop closure reduces reprojection er-
ror for eSpinSLAM - indicating accurate frequency estima-
tion enhances consistency between observations and world
points. Finally, eSfO [16] accumulates the largest reprojec-
tion error, indicating potential weakness in its FFT-based

frequency estimation and more complex paramterization.

CAD model alignment error To measure the accuracy of
the recovered structure, estimated world points are aligned
using the ICP [3] algorithm to the corresponding CAD mod-
els and alignment error is computed (Table 2). eSpinSLAM
demonstrates better accuracy than eSfO thanks to precise
frequency estimation and updated formulation. Further-
more, the low reprojection error of COLMAP + ETC tracks
does not translate to a higher-quality reconstruction. The
reconstructions are internally consistent but the recovered
structure deviates from the real-world. Despite the higher
reprojection error for eSfO, the reconstructions are of gen-
erally close to the CAD models.

5.6. Incremental reconstruction

The incremental operation of eSpinSLAM is demonstrated
using the evolution of reprojection error over time for a sam-
ple scene (Fig. 8). Reprojection error decreases as the loop

4.0

--=-Mean scene throughput
3.51 —— Mean
3.0 Median
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o
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Figure 7. eSpinSLAM throughput on TOPSPIN (million events/s).
Mean scene throughput indicates the mean throughput of all the
scenes for the object. System throughput is consistently above the
mean scene throughput for all objects—indicating real-time perfor-
mance.
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Setting Hubble SOHO TDRS Camera Dualshock Switch
Reprojection Error (px) |
FFT f estimation 5.61 +7.93 5.81 + 5.58 3.41+356 267+1.34 299+235 439+5.11
No factor graph f constraint | 6.01 + 3.79 1716 +£9.03 4294233 289+3.11 527+7.75 12.38+£6.91
No landmark association 2.11 +1.93 3.68 +0.71 1.18 £ 071 042+080 1.67+1.86 1.09+ 1.50
eSpinSLAM 3.25+3.01 2.99 +3.17 1.54+020 198£0.15 2194+091 1.944+0.35
ICP Alignment RMSE (mm) |

FFT f estimation 3.17+£1.82 3.51+244 5.95+1.62 2134+1.05 4.21+£1.33 3.16+£2.03
No factor graph f constraint | 8.14+7.29  1549+3.60 5.114+249 1.12+£1.27 435+£0.74 9.38+3.29
No landmark association 13.744+£3.92 1247+11.16 19.61+8.31 9.19+£5.10 7.724+3.27 13.11£3.30
eSpinSLAM 1.92 +£0.71 0.56 + 0.41 0.66 +0.76 0.75+0.57 0.93 £1.02 1.83 +0.66

Table 3. Ablation study on the effect of method components within eSpinSLAM. The experiments were conducted on the TOPSPIN [16]
dataset; results are collated by each model present in the dataset, where the mean and standard deviation for each metric are reported.
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Figure 8. Mean reprojection error and number of world points over
time for the soho-perpendicular-fast scene.

closure is detected and f is determined. Concurrently, the
number of world points decreases as duplicates are fused to-
gether. Whilst the number of reconstructed points steadily
increases over time, reprojection error stays consistently
low — demonstrating the ability of eSpinSLAM to operate
incrementally online. It should be noted that while initially
some features are rejected due to their bad quality, as the
motion parameters are better estimated, an increasing num-
ber of world points (Fig. 8) are incorporated into the esti-
mation over time, all whilst the reprojection errors remain
low. This demonstrates the incremental reconstruction ca-
pabilities of the eSpinSLAM algorithm.

6. Ablation study

To quantify the contribution of key components in eS-
pinSLAM’s design, we conducted an ablation study using
the TOPSPIN dataset [16]. Specifically, we investigated
the effects of (i) estimating frequency via FFT instead of
Sec. 4.2.1; (ii) disabling the factor graph constraint on fre-
quency during optimization, so that f is not fixed to f*
and can be optimized; and (iii) omitting landmark associ-
ation during long-term operation. Table 3 presents a com-
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parative summary of reprojection errors and ICP alignment
RMSE for each setting. The complete eSpinSLAM pipeline
achieves the best performance, validating the necessity of
each individual component.

Replacing the loop closure-based frequency estimation
with FFT (as in eSfO [16]) leads to a notable increase in
both reprojection and alignment errors. The FFT estimation
method is sensitive to noise and the resolution of the fre-
quency estimates is limited by the Nyquist-Shannon sam-
pling theorem. These are limitations that are not present in
our loop closure method.

Disabling the factor graph constraint on frequency dur-
ing optimization results in the largest degradation. Both re-
projection and alignment errors increase significantly, par-
ticularly for objects with multiple axes of symmetry (SOHO
and Switch). This stems from ambiguities in motion inter-
pretation — without a frequency bound, multiple local min-
ima exist in the frequency space due to frequency harmonics
and object symmetry presenting locally optimal solutions.

Eliminating landmark association severely increases
alignment errors while maintaining only a modest increase
in reprojection error. While image-space reprojection error
remains locally accurate, duplicate world points accumulate
due to track fragmentation caused by occlusion or sensor
noise. Landmark association can mitigate this by merging
landmarks from related but time separated tracks.

7. Conclusions

We presented a novel spinning object reconstruction for-
mulation, eSpinSLAM, that enables high throughput, on-
line recovery of the target’s structure and continuous time
camera pose estimation utilizing a single event camera. eS-
pinSLAM incorporates loop closure detection, feature track
management, and world point fusion to enable infinite-time
operation. Experiments on real data demonstrate improved
structure estimation. Future work will explore extending the
formulation to more complex object motion e.g. variation of
the spin rate and procession of the spin axis.
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