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Abstract

Event cameras show great potential for visual odometry
(VO) in handling challenging situations, such as fast mo-
tion and high dynamic range. Despite this promise, the
sparse and motion-dependent characteristics of event data
continue to limit the performance of feature-based or direct-
based data association methods in practical applications.
To address these limitations, we propose Deep Event Iner-
tial Odometry (DEIO), the first monocular learning-based
event-inertial framework, which combines a learning-based
method with traditional nonlinear graph-based optimiza-
tion. Specifically, an event-based recurrent network is
adopted to provide accurate and sparse associations of
event patches over time. DEIO further integrates it with
the IMU to recover up-to-scale pose and provide robust
state estimation. The Hessian information derived from
the learned differentiable bundle adjustment (DBA) is uti-
lized to optimize the co-visibility factor graph, which tightly
incorporates event patch correspondences and IMU pre-
integration within a keyframe-based sliding window. Com-
prehensive validations demonstrate that DEIO achieves su-
perior performance on 10 challenging public benchmarks
compared with more than 20 state-of-the-art methods. We
release the source code and qualitative results: https :
//kwanwaipang.github.io/DEIO/.

1. Introduction

Event cameras are motion-activated sensors that only cap-
ture pixel-wise intensity changes with microsecond preci-
sion and report them as an asynchronous stream instead of
the whole scene as an intensity image with a fixed frame
rate. Due to their remarkable properties, such as high tem-
poral resolutions, high dynamic range (HDR), and no mo-
tion blur, event cameras have the potential to enable high-
quality perception in extreme lighting conditions and high-
speed motion scenarios that are currently not accessible to
standard cameras.
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Despite such promises, integrating event cameras into
visual odometry (VO) systems presents significant chal-
lenges. This is primarily due to the sparse, irregular, and
asynchronous nature of event data, which conveys limited
information and contains inherent noise. Moreover, due to
the motion-dependent characteristic, both feature-based and
direct-based methods easily fail in incomplete observation
or sudden variation of the event camera. Therefore, current
purely event-based VO systems [28, 36] generally lack the
robustness requirement for real-world applications. Recent
studies have introduced learning-based approaches [19, 25]
as promising solutions for event-based VO, addressing the
previously mentioned limitations by employing neural net-
works to establish robust associations. However, it is worth
noting that visual/event-only systems have inherent limi-
tations, making them vulnerable to low-textured environ-
ments or suffering from scale ambiguity. To mitigate vi-
sual degradations, a practical and promising strategy is to
incorporate the Inertial Measurement Unit (IMU), which is
low-cost and readily available in event cameras. Neverthe-
less, integrating an event-based network with IMU remains
an unexplored territory due to the challenge of efficiently
fusing the learning-based event association with IMU.

In this work, we propose Deep Event Inertial Odom-
etry (DEIO), the first deep learning-based event-inertial
odometry framework. It is developed based on a learning-
optimization framework that leverages neural networks to
predict event correspondences and tightly integrates IMU
measurements to enhance the robustness of the odometry.
More specifically, our framework decouples the neural net-
work from IMU integration and operates in two phases: (i)
an event-based recurrent network learns to provide robust
data associations of sparse event patches. (ii) The network
is tightly integrated with the IMU measurements within a
factor graph optimization framework to achieve 6-DoF pose
tracking. Our contributions are summarized as follows:

1. We propose a learning-optimization framework that
seamlessly integrates the power of deep learning with
the efficiency of factor graph optimization. To the best
of our knowledge, this is the first event-inertial odome-
try framework that employs deep learning for event data



association and graph optimization for pose estimation.

An event-based co-visibility factor graph optimization
is proposed to tightly integrate event patch correspon-
dences and IMU pre-integration by deriving Hessian in-
formation from differentiable bundle adjustment (DBA).
Extensive experiments on 10 challenging event-based
real-world benchmarks demonstrate the superior perfor-
mance of DEIO compared to over 20 advanced methods.
We release the source code to facilitate further research.

2. Related Work
2.1. Traditional Event-based VO

To enhance the robustness of purely event-based VO, ex-
isting event-based SLAM methods have demonstrated good
performance by incorporating additional sensors. Notably,
event-inertial integration is a widely used approach to ad-
dress the limitations of event-only SLAM, which provides
scale awareness and continuity of estimation with mini-
mal setup requirements. Zhu et al. [40] propose the first
event-inertial odometry (EIO) method, which fuses events
with IMU through the Extended Kalman Filter. Rebecq
et al. [29] propose an optimization-based EIO that de-
tects and tracks features in the edge image, generated
from motion-compensated event streams, through tradi-
tional image-based feature detection and tracking. The
tracked features are then combined with IMU measure-
ments via keyframe-based nonlinear optimization. Mono-
EIO [13] employs the event-corner features with IMU mea-
surement to deliver real-time and accurate 6-DoF state es-
timation. Ultimate-SLAM [33] and PL-EVIO [14] inves-
tigate the complementary nature of events and images to
present an event-image-IMU odometry (EVIO). ESVIO [4]
proposes the first stereo EIO and EVIO framework to es-
timate states through temporally and spatially event-corner
feature association. ESVO2 [23, 24] extends ESVO [36]
and presents a direct method for stereo event cameras with
an IMU-aided solution. EVI-SAM [15] introduces the
first event-based hybrid pose tracking framework, merging
feature-based and direct-based methods, with IMU fusion.

2.2. Learning Event-based VO

Zhu et al. [39] pioneer the first learning-based event odom-
etry framework, utilizing an unsupervised network with a
contrast maximization loss [7]. Ye et al. [34] extend the
StMLearner [35], which employs a depth network and pose
network for event-based optical flow estimation. However,
these methods show poor generalization beyond the train-
ing scenarios. DEVO [19] extends the DPVO [32] to ac-
commodate the event modality also through the voxel-based
representation like E-RAFT [10], demonstrating great gen-
eralization from synthetic data to seven real-world event-
based benchmarks. RAMP-VO [25] introduces an end-to-
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end VO that also builds upon DPVO [32] using feature en-
coders to fuse events and image data. However, the absolute
scale is not observable in these monocular event-only sys-
tems. Visual-IMU integration is the most common solution
to address these limitations, which provides scale awareness
and continuous estimation with minimal setup. Neverthe-
less, efficiently integrating learning-based event data asso-
ciation with IMU measurements remains an open problem.
This work aims to bridge this gap by proposing a combined
learning-optimization framework.

3. Methodology

The overall design of the framework aims to tightly fuse the
learnable event-based data association with traditional IMU
pre-integration. Fig. 1 depicts the overview of our system.
For the front end, a deep neural network (Section 3.1) is
utilized to estimate the sparse patch-based correspondences
for the optical flow of events. On the back end, Hessian
information derived from the learned DBA layer is tightly
integrated with the IMU pre-integration (Section 3.2). This
design leverages the representational power of deep neu-
ral networks to achieve robust event-based data association
while simultaneously harnessing inertial measurement ben-
efits without requiring IMU training data, thereby preserv-
ing the generalization capabilities of our DEIO.

3.1. Learning-based Event Data Association

Event Encoding: Each event is represented as a tuple
(t,x,y,p), where t denotes the trigger timestamp in mi-
croseconds at the pixel (z,y) and p; indicates polarity with
p = 1 for an increase in brightness and p = —1 for a de-
crease. The event streams are divided into segments based
on a predefined temporal interval At. We preprocess the
event segment within an interval [t;, — At, ;) into a ten-
sor B; € RP*HXW ysing the voxel representation [39],
where D represents the number of discretization steps in
time. Therefore, the event-based optical flow estimation
from segment ¢ to segment j fundamentally involves estab-
lishing data correspondences between E; and E;.

Patch Structure: The patch-based architecture [32] is
adopted to compute the flow for a set of sparse event
patches. A p x p event patch, sampled from the event voxel
E, is represented as a set of pixel coordinates P = [x, y| €
RP* X2 where all pixels within the patch are assumed to
have a constant inverse depth d € R . The dynamic event
patch graph G is a bipartite graph where each edge is de-
noted as [(i, n), j], indicating the relationship between event
patch n from segment ¢ and the target segment j. The net-
work structure for event-based data association inherits the
recurrent network from [19, 32] and consists of three pri-
mary components: (i) a feature encoder that extracts patch-
based event feature representations; (ii) a correlation layer
that computes the visual similarity; (iii) a recurrent update
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Figure 1. Overview of the DEIO system. It decouples network training from IMU integration and operates in two phases: offline training
and online optimization. During training, a unified event-based optical flow network is trained to provide robust data associations of sparse
event patches. At runtime, the Hessian information, derived from the DBA layer in the update operator, is utilized to tightly integrate event
patch correspondence with IMU pre-integration through an event patch-based co-visibility factor graph optimization.

operator that handles event-patch correspondences, which
estimates the 2D optical flow vector é and the confidence
weights w for each patch.

Differentiable Bundle Adjustment (DBA): The DBA
layer jointly refines camera poses and patch depth across
the entire patch graph G to match the predicted patch opti-
cal flow d by the following optimization objective:

UT)i} Adi}} = argminy - 1P (T i din) 15,
¢ (1)
F(Tjidi)=7 (Tji ! (Pm,dm)) - (Pm+5mj)

where (05, win;) 18 the patch-based optical flow field pre-
dicted by the event-based recurrent network. The term
Oinj € R? denotes a 2D flow vector that indicates how the
reprojection of the event-patch center should be updated,
and wy,,; serves as the patch-wise confidence weight of the
optical flow. F' is the shorthand to denote the residual term
on the patch center coordinates, and || - || is the Mahalanobis
distance. 7 and 7t~ ! are the projection and back-projection
functions of the event camera. T'j; = Tj_lTi represents
the transformation from frame ¢ to frame j, where T';, T'; €
SE(3) denote the camera poses in the camera-to-world for-
mat. In this work, the pre-trained network weights [19] are
employed to estimate sparse event patch correspondences

due to their strong generalization.

3.2. Learnable Hessian Information Extraction

To extract the information from the learning-based event
data association and integrate it with the IMU, we linearize
Eq. (1) as follows:

F(&; @ Tj;,dip, + Adiy,) — F(Tj;, diy)

y 2)
SEINE

where £, is the Lie algebras of the updated pose in se(3).
Ad,;,, denotes the updated state of the inverse depth. The
Jacobians J j;, J q,, are the partial derivatives of F' with re-
spect to the pose T';; and the inverse depth d;,,, respectively.
An event-patch P;,, can be reprojected from segment ¢ into
segment j follows the warping function:

P,‘ - [xjn Yjn Zjn I]T = T]z ' 77_1<Pin7din) (3)

gn

where (Zjn, Yjn, 2jn) is the center of the event patch at seg-
ment j in the event camera coordinate. J j; is expressed as:

. . 2 .
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4608



where f, and f, are the given event camera intrinsic param-

eters. Jq,, 1S given as:
t;(0] _ tji[2zjn
J _ fl(zjn “L Z_jz-n'din ) (5)
din — 1, ( _ tji[Q]yjn)
Y ZJn in 22 din

in

where t; is the translation vector of the related transform
between T; and T';. Therefore, the Hessian matrix of
Eq. (2) can be computed as follows:

T

Hj=[Jji Ja,| Win[Jji Ja,,] (6)

where W;,,; = diag(w;,, ;). To improve readability, the no-

tation for (¢, n), j] edges in H j; and W, ; will be omitted
in subsequent equations unless otherwise specified.

By decoupling the pose and depth variables, the system

can be solved efficiently using the Schur complement:

in

H |:A€Cjizn:| - [JJZ Jdi"le WF(T]M din)
(N
B E|[¢& ] [v
ET cfl|ad,|” |u
Therefore, the following equation can be obtained:
&=[B-BC B (0-BC W) )
H, Vy

where B is the matrix with size of 60 x 60, E is the residual
matrix with size of 60x 960, and C' is a diagonal matrix with
size of 960 x 960. A damping factor of 10~* is also applied
to C' as [32]. These matrices establish an interframe pose
constraint (represented by H , and V') that integrates the
DBA information. After updating the camera poses T;-Z-
Exp(&;;)Tji, the inverse depth of each event patch can be
updated as:

Adi, = C ' (u—E"¢;) ©
in 7t

The calculations of Eq. (8) and Eq. (9) can be efficiently
performed in parallel on a GPU with CUDA acceleration.
All the Hessian information H 4 and the corresponding V ,,
derived from the co-visibility graph, are integrated into the
factor graph where they are optimized on the CPU. The
DBA contributes extensive geometric information, incorpo-
rating learned uncertainties, to the factor graph. The opti-
mization results (updated poses and depths) are then itera-
tively fed back to refine the event-based optical flow net-
work.

3.3. Event-IMU Combined Bundle Adjustment

Unlike end-to-end approaches that use deep networks to
fuse the features from two modalities (visual and IMU)
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and predict poses directly, our DEIO combines the neu-
ral networks with event-inertial bundle adjustment. To this
end, we design a learning-optimization combined frame-
work that tightly integrates the Hessian information from
DBA and IMU pre-integration within keyframe-based slid-
ing window optimization. The full state vector of the kth
keyframe in the sliding window (with the total number of
keyframes K = 10 in our implementation), is defined as:

x = [T}, vy, ,ba,, by, ]k =1,2,3,. (10)
where Ty = Robk bx | ¢ SE(3) is the pose of the body

(IMU) frame in the world frame, given by the translation
and rotation matrix Ry . vy’ is the velocity of the IMU in
the world frame. b,, and b, are the accelerometer bias and
gyroscope bias, respectively. We solve the state estimation
problem by constructing a factor graph with the GTSAM li-
brary and optimizing it with the Levenberg-Marquardt. The
cost function can be written as:

K-1
J( )_HreventHWk +Z||rlmu||wk +Hr"l||W

event
k=0

an

Eq. (1 l) contains the event-based residuals revem with
weight WF_ the IMU pre-integration residuals 7 with

evenl’ imu
weight W  and the marginalization residuals r,, with

imu’

weight W,,. Given the Hessian information H, and the
corresponding V', the event residual factor can be written

as:
1 SZ;
k - w w .
T event _2 [560 6610] Hg w (12)
E610
- [SZ; 57;)10] Vg

where €% = €€, and €5, = loggg (s (T1. ). €1 and €},
are the Lie algebras of the event camera pose and IMU pose
in k*" keyframe, respectively. &; is the extrinsics between
the event camera and IMU.

Eventually, the IMU residual factor can be derived as
follows:

b
(ty.,, — th, — vi At — 29“’At2) Gy

b
R (vbk“ — vy — gPAt) — ,Ble

R

w

flf = - b B
Timu 2 [(qzl;) ! ® qll;jc-#l ® (’Yb’;+1) 1:|xyz
bak+1 - bak
bgk+1 B bgk

(13)

where ale Bbk - ’ka+ are the IMU pre-integration
term [14]; g% is the gravity vector; At is the time inter-
val between keyframe k and k + 1; g’ is the quaternion of
the corresponding rotation matrix Rfj with [-],. extracts
the vector portion.



Table 1. Accuracy comparison [MPE(%)] of our DEIO in DAVIS240c dataset [22]. The estimated trajectory is aligned with the ground

truth over the first 5 seconds.

Methods Modality | boxes_translation hdr_boxes boxes_6dof dynamic_translation dynamic_6dof poster_translation hdr_poster poster_6dof | Average
Zhu et al. [40] E+I 2.69 1.23 3.61 1.90 4.07 0.94 2.63 3.56 2.58
Henri et al. [29] E+I 0.57 0.92 0.69 0.47 0.54 0.89 0.59 0.82 0.69
Ultimate-SLAM [33]|  E+I 0.76 0.67 0.44 0.59 0.38 0.15 0.49 0.30 0.47
Jung etal. [17] E+1 1.50 2.45 2.88 4.92 6.23 3.43 2.38 2.53 3.29
HASTE-VIO [1] E+1 2.55 1.75 2.03 1.32 0.52 1.34 0.57 1.50 1.45
EKLT-VIO [21] E+F+1 0.48 0.46 0.84 0.40 0.79 0.35 0.65 0.35 0.54
Dai et al. [5] E+I 1.0 1.8 15 0.9 15 1.9 2.8 1.2 1.58
Mono-EIO [13] E+I 0.34 0.40 0.61 0.26 0.43 0.40 0.40 0.26 0.39
Kai et al. [31] E+I 0.36 0.31 0.32 0.59 0.49 0.23 0.18 0.31 0.35
PL-EVIO [14] E+F+1 0.06 0.10 0.21 0.24 0.48 0.54 0.12 0.14 0.24
Lee et al. [20] E+F+1 0.74 0.69 0.77 0.71 0.86 0.28 0.52 0.59 0.65
EVI-SAM [15] E+F+1 0.11 0.13 0.16 0.30 0.27 0.34 0.15 0.24 0.21
DPVO [32] F 0.02 0.71 0.59 0.09 0.05 0.20 0.49 0.44 0.32
DBA-Fusion [37] F+I 0.07 0.27 0.10 0.56 0.11 0.13 0.38 0.19 0.23
DEVO [19] E 0.06 0.06 0.71 0.09 0.08 0.06 0.14 0.44 0.21
DEIO E+I 0.07 0.09 0.05 0.06 0.04 0.04 0.06 0.08 0.06

Table 2. Accuracy comparison [MPE(%)] of our DEIO in the Mono-HKU dataset [13]. The estimated trajectory is aligned with the ground

truth over the first 5 seconds.

Resolution Methods Modality vicon vicon vicon vicon vicop vicog ) vicon ) vicon vicon  vicon Average
_hdrl  _hdr2 _hdr3 _hdr4 _darktolight] _darktolight2 _lighttodarkl _lighttodark2 _darkl _dark2

ORB-SLAM3 [2] F 032 075 060 0.70 0.75 0.76 0.41 0.58 failed — 0.60 0.61
VINS-MONO [26] F+I 096 1.60 2.28 1.40 0.51 0.98 0.55 0.55 0.88 0.52 1.02
DBA-Fusion [37] F+I 032 041 failed failed 0.72 0.55 failed 2.65 332 failed 1.33
Ultimate-SLAM [33] E+I 149 128  0.66 1.84 1.33 1.48 1.79 1.32 1.75 1.10 1.40
Ultimate-SLAM [33] | E+F+I 244 111 083 1.49 1.00 0.79 0.84 1.49 3.45 0.63 1.41
DAVIS346 Mono-EIO [13] E+I 059 074 072 037 0.81 0.42 0.29 0.79 1.02 0.49 0.62
(346 x260) PL-EIO [14] E+I 057 054 069 032 0.66 0.51 0.33 0.53 0.35 0.38 0.49
PL-EVIO [14] F+E+I 0.17 0.12 019 0.11 0.14 0.12 0.13 0.16 0.43 0.47 0.20
DEVO [19] E 011 0.07 012 0.07 0.97 0.12 0.15 0.12 0.07 0.07 0.19
DEIO E+I 0.14  0.09 0.16 0.07 0.11 0.10 0.11 0.13 0.05 0.08 0.10

4. Experiments

DAVIS240C [22]:

As shown in Table 1, EVI-SAM

We conduct quantitative and qualitative evaluations of our
DEIO across fen challenging real-world datasets with vary-
ing camera resolution and diversity scenarios on different
platforms. Specifically, in Section 4.1, we compare DEIO
with baseline methods across multiple challenging event
datasets, showcasing its superior performance and excep-
tional generalization capabilities. Section 4.2 provides a
time efficiency evaluation of DEIO. Finally, the project
website provides video demos and the qualitative results as
supplementary material.

4.1. Comparisons with SOTA Methods in Challenge
Benchmarks

To ensure a fair comparison, a consistent trajectory align-
ment protocol is required. Therefore, we employ differ-
ent alignment ways and evaluation criteria according to the
compared baseline methods, including the mean position er-
ror (MPE), and the root mean squared error (RMSE) / Ab-
solute Trajectory Errors (ATE), using the publicly available
trajectory evaluation tool [12]. The notations E, F, and I
in each table represent the use of event, frame, and IMU,
respectively.

achieves the best performance among the non-learning
methods. In contrast, learning-based methods (such as
DEVO) can achieve performance comparable to EVI-SAM
(which combines both direct and feature-based methods)
using purely event sensors, highlighting the effectiveness
and strength of learning-based approaches. Meanwhile,
our learning-optimization combined method exhibits signif-
icantly superior performance compared to other learning-
based methods (DPVO, DBA-Fusion, and DEVO). Com-
pared to DEVO, our proposed DEIO reduces the pose track-
ing error by up to 71%, owing to the effective integration of
learning-based and traditional optimization methods.

Monocular HKU-dataset [13]: Table 2 demonstrates
that DEIO outperforms all the event-based methods and de-
creases the average pose tracking error by at least 47%. As
illustrated in the project website, the estimated trajectory of
DEVO suffers from significant scale loss because the ab-
solute scale cannot be observed in monocular event-only
odometry. In contrast, our DEIO, despite also being based
on a monocular setup, effectively overcomes scale ambi-
guity and aligns closely with the ground truth trajectory.
This improvement is attributed to the effective compensa-
tion provided by the IMU.
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Table 3. Accuracy comparison [MPE(%)] of our DEIO in the Stereo-HKU dataset [4]. The entire sequence of estimated poses is aligned

with the ground truth trajectory. The DPVO, DEVO are taken from [19], and the results of Kai et al. are taken from [31].

Methods Modality agg_translation agg rotation agg flip agg walk hdrcircle hdrslow hdrtranrota hdr.agg dark_normal | Average
ORB-SLAM3 [2] Stereo F+1 0.15 0.35 0.36 Jailed 0.17 0.16 0.30 0.29 failed 0.25
VINS-Fusion [27] Stereo F+1 0.11 1.34 1.16 Jailed 5.03 0.13 0.11 1.21 0.86 1.24

DPVO [32] F 0.07 0.04 0.99 1.17 0.31 0.23 0.67 0.29 failed 0.47
DBA-Fusion [37] F+I 0.13 0.16 0.83 0.37 0.18 failed failed 0.10 0.27 0.29
Kai et al. [31] E+I 0.21 0.28 0.81 0.35 0.71 0.43 0.50 0.27 0.52 0.45
PL-EVIO [14] E+F+1 0.07 0.23 0.39 0.42 0.14 0.13 0.10 0.14 1.35 0.33
EVI-SAM [15] E+F+] 0.17 0.24 0.32 0.26 0.13 0.11 0.11 0.10 0.85 0.25
ESIO [4] Stereo E+I 0.55 0.78 3.17 1.30 0.46 0.31 0.91 1.41 0.35 1.03
ESVIO [4] Stereo E+F+1 0.10 0.17 0.36 0.31 0.16 0.11 0.10 0.10 0.42 0.20
DEVO [19] E 0.06 0.05 0.71 0.90 0.39 0.08 0.08 0.26 0.06 0.29
DEIO E+I 0.06 0.09 0.20 0.48 0.14 0.07 0.09 0.06 0.11 0.14

Table 4. Accuracy comparison [MPE(%)] of our DEIO in VECtor dataset [8]. The entire sequence of estimated poses is aligned with the

ground truth trajectory.

Methods Modality corner-  desk- sofa- mountain- corridors- corridors- units-  units- average
slow  normal  fast fast dolly walk dolly  scooter

ORB-SLAM3 [2] Stereo F+1 1.49 0.46 0.21 2.11 1.03 1.32 7.64 6.22 2.56
VINS-Fusion [27] Stereo F+1 1.61 0.47 0.57 Jailed 1.88 0.50 4.39 4.92 2.05
DPVO [32] F 0.30 0.09 0.07 0.11 0.56 0.54 1.52 1.67 0.61
DBA-Fusion [37] F+I 1.72 0.48 0.43 Jailed 1.37 0.59 1.23 0.48 0.90
EVO [28] E 4.33 failed  failed failed failed failed failed  failed 4.33
ESVO [36] Stereo E 4.83 failed  failed Jailed failed Jailed Jailed  failed 4.83
Ultimate-SLAM [33] E+F+I 4.83 2.24 2.54 4.13 failed failed failed  failed 3.44
PL-EVIO [14] E+F+1 2.10 3.66 0.17 0.13 1.58 0.92 5.84 5.00 243
ESVIO [4] Stereo E+F+1 1.49 0.61 0.17 0.16 1.13 0.43 3.43 2.85 1.28
EVI-SAM [15] E+F+1 2.50 1.45 0.98 0.38 1.58 1.27 0.59 0.83 1.20
DEVO [19] E 0.59 0.11 0.38 0.37 0.51 1.04 0.48 0.88 0.55
DEIO E+I 0.50 0.13 0.44 0.24 0.78 0.74 0.35 0.35 0.44

Stereo HKU-dataset [4]: In Table 3, our method out-
performs all previous works in terms of average positioning
error. Note that event-only VO methods, such as EVO [28],
ESVO [36], as well as stereo event and IMU-based methods
like ESVO2 [23, 24], fail to perform successfully on any of
the sequences in this dataset. Moreover, DEIO beats DEVO
and increases the average accuracy of the sequences up to
48%.

VECtor [8]: As presented in Table 4, our proposed
DEIO achieves remarkable results on average. It surpasses
all image-based baselines with high-quality frames (im-
age 1224x1024 vs event 640x480) and even outperforms
Ultimate-SLAM, PL-EVIO, ESVIO, and EVI-SAM on over
75% of the sequences, which utilize event, image, and IMU.
Our DEIO also outperforms DEVO on average in large-
scale sequences, thanks to the complementary integration of
the event and IMU sensors, while other monocular visual-
only methods struggle with scale ambiguity and drift.

TUM-VIE [18]: The results in Table 5 demonstrate that
DEIO outperforms all other methods on four out of five se-
quences, despite DH-PTAM [30] utilizing four cameras of
the setup (stereo events and stereo images). Our DEIO sig-
nificantly outperforms ESVO2 [4, 24] and improves average
accuracy by up to 79%. Notably, ESVO?2 relies on stereo

Table 5. Accuracy comparison [ATE/RMSE (cm)] of our DEIO in
TUM-VIE dataset [18]. The entire sequence of estimated poses is
aligned with the ground truth trajectory. The EVO, ESVO, and ES-
PTAM are taken from [11], DH-PTAM and Ultimate-SLAM are
sourced from [30], DEVO is from [19], and ESVIO_AA, ESVO2
are from [24].

Methods Modality fmocap- Average
Id-trans  3d-trans  6dof  desk desk2

EVO [28] E 7.5 12.5 855 541 752 47.0
ESVO [36] Stereo E 123 17.2 13.0 124 46 11.9
ESVIO_AA [23] Stereo E+1 3.9 189  failed 9.00 95 10.3
ESVO2 [24] Stereo E+1 33 7.3 32 6.2 4.0 4.8
ES-PTAM [11] Stereo E 1.05 8.53 1025 25 72 59
DH-PTAM [30] Stereo E+F 103 0.7 2.4 1.6 1.5 33
Ultimate-SLAM [33] E+F+1 3.9 4.7 353 195 341 19.5
DEVO [19] E 0.5 1.1 1.6 1.7 1.0 12
DEIO E+1 0.4 1.1 14 14 0.7 1.0

event and IMU setup, while our DEIO achieves superior re-
sults using only a monocular event camera and IMU. This
highlights that our approach, using only a monocular event
camera and IMU, can recover scale comparable to that of a
stereo event setup.

EDS [16]: As shown in Table 6, our DEIO outper-
forms the image-based baselines, including ORB-SLAM3,
DPVO, and DBA-Fusion. Moreover, DEIO achieves an av-
erage improvement of 30% over DEVO and demonstrates
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Table 6. Accuracy comparison [ATE/RMSE (cm)] of our DEIO in EDS dataset [16]. The entire sequence of estimated poses is aligned
with the ground truth trajectory. The ORB-SLAM3, DPVO, and DEVO are taken from [19], while RAMP-VO is sourced from [25].

Methods Modality | peanuts_dark peanuts_light peanuts_run rocket_dark rocket_light  ziggy  ziggy_hdr ziggy flying all_chars | Average
ORB-SLAMS3 [2] | Stereo F+I 6.15 27.26 16.83 10.12 32.53 26.92 81.98 20.57 21.37 27.08
DPVO [32] F 1.26 12.99 25.48 27.41 63.11 14.86 66.17 10.85 95.87 3533
DBA-Fusion [37] F+I 7.26 149.36 134.92 114.24 117.09 173.50 140.51 11.81 126.36 108.34
DEVO [19] E 4.78 21.07 38.10 8.78 59.83 11.84 22.82 10.92 10.76 20.99
RAMP-VO [25] E+F 1.20 9.03 13.19 7.20 17.53 19.05 28.78 6.35 28.61 14.55
DEIO E+I 1.77 16.27 19.96 8.91 1541 10.39 23.82 3.84 31.55 14.66
v A
gt e == Ground Truth === DEIO
30
A, 150
B
Ol o
> % 10 z
Low Texture I\ ~ 150+
~ 60f
T
P Y
B -
= !
&
—60} 3
_ 150F
o0
2
~ O .
B
>~
—150

0

Motion Blur

10 20

30
Time (s)

10 20 30 40 50 60
Time (s)

20 50 60 0

Figure 2. The estimated trajectories (X, Y, Z, Roll, Pitch, Yaw) of our DEIO against the GT in the sequence of indoor_forward_7 from the
UZH-FPV [6] dataset. The image view (visualization-only) demonstrates the condition under low texture, HDR, and motion blur.

performance comparable to RAMP-VO, a learning-based
VO system that leverages both event and image modalities.
In the case of DBA-Fusion [37], despite operating within a
dense learning-based VIO framework, DEIO demonstrates
superior performance, showing the distinct advantages of
event cameras in challenging scenarios.

UZH-FPV [6]: As shown in Table 7 and Fig. 2, this
dataset poses significant challenges for existing methods,
with even advanced learning-based VO approaches like
DPVO failing to maintain reliable tracking across all se-
quences. Additionally, incorporating IMU measurements
does not resolve these challenges, such as learning-based
VIO methods (DBA-Fusion), which also fail to complete
any sequences. This is due to the motion blur caused by
rapid movement, which makes it difficult to effectively es-
tablish data association for the image sensor, even if these
methods are equipped with a powerful learning network.
In contrast, our DEIO achieves higher average performance
than all baseline methods, demonstrating greater resilience
to the fast flight conditions.

MYVSEC [38]: In Table 8, DEIO surpasses the event-
based baseline, especially for the Flying_4, where it attains
an RMSE of 40% lower than DEVO. Although ESVIO [4]
employs a setup integrating stereo images, stereo events,
and IMU data, DEIO, which relies solely on monocular
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Table 7. Accuracy comparison [MPE (%)] of our DEIO in UZH-
FPV dataset [6]. The entire sequence of estimated poses is aligned
with the ground truth trajectory. The DPVO, DEVO are taken
from [19].

Methods Modality Indoorforward Average
3 5 6 7 9 10

VINS-Fusion [27] | Stereo F+1| 0.84 failed 145 0.61 2.87 448 | 2.05
ORB-SLAMS3 [2] |[Stereo F+I| 0.55 1.19 failed 036 0.77 1.02 | 0.78
DPVO [32] F failed failed failed failed failed failed| —
VINS-MONO [26] F+l 0.65 1.07 025 037 051 092 0.70
DBA-Fusion [37] F+I failed failed failed failed failed failed —
Ultimate SLAM [33]| E+F+l |failed failed failed failed failed failed —
PL-EVIO [14] E+F+I | 0.38 090 030 055 044 1.06 | 0.61
DEVO [19] E 0.37 040 031 050 0.61 052 | 045
DEIO E+I 039 036 033 032 059 055 042

event data and IMU, demonstrates an average accuracy im-
provement of over 80% compared to ESVIO. As for the
learning-based VIO method (DBA-Fusion) that relies on
dense data association, it failed on three out of the four se-
quences. This indicates that even though the deep learn-
ing methods can provide strong data association capabili-
ties, the degradation of images in challenging environments
limits their performance compared to the event modality.

DSEC [9]: As presented in Table 9, our DEIO outper-
forms the stereo event methods (ES-PTAM, ESVO, ES-
VIO_AA, and ESIO) by large margins on all sequences (at



Table 8. Accuracy comparison [MPE (%)] of our DEIO in
MVSEC dataset [38]. The entire sequence of estimated poses is
aligned with the ground truth trajectory. The DEVO result is taken
from [19].

Methods Modality Flying_1 Flying2 Flying3 Flying4 | Average
ORB-SLAMS3 [2] Stereo F+I 5.31 5.65 2.90 6.99 5.21
VINS-Fusion [27] Stereo F+1 1.50 6.98 0.73 3.62 3.21

EVO [28] E 5.09 Jailed 2.58 Jailed 3.84

ESVO [36] Stereo E 4.00 3.66 1.71 Jailed 3.12
Ultimate-SLAM [33] E+F+I failed failed failed 2.77 2.77
PL-EVIO [14] E+F+1 1.35 1.00 0.64 5.31 2.08
ESVIO [4] Stereo E+F+1 0.94 1.00 0.47 5.55 1.99
DBA-Fusion [37] F+1 2.20 failed failed failed 2.20
DEVO [19] E 0.26 0.32 0.19 1.08 0.46
DEIO E+I 0.24 0.21 0.12 0.78 0.34

Table 9. Accuracy comparison [ATE/RMSE (cm)] of our DEIO
in DSEC dataset [9]. The entire sequence of estimated poses
is aligned with the ground truth trajectory. The ESVO and ES-
VIO_AA are taken from [23], and ES-PTAM is sourced from [11].

Methods Modality dscc_zurich-city 04 Average
a b c d e

ESVO [36] Stereo E 371.1 116.6 1357.1 2676.6 794.9 | 1063.3
ESVIO_AA [23]| Stereo E+I | 105.0 66.7 6379 699.8 1303 | 327.9
ES-PTAM [11] StereoE | 131.62 29.02 1184.37 1053.87 759 | 495.0
ESIO [4] Stereo E+I | 543.5 295.1 896.2 2977.0 2326.4| 1407.6
ESVIO [4]  |Stereo E+F+I| 371.2 445.8 1892.7 921.7 352.0 | 796.7
DEIO E+I 80.6 354 4138 207.6 86.1 | 164.7

least 66.7% lower RMSE). The results from our DEIO align
more closely with the ground truth, despite using a monoc-
ular setup, while the other methods employ a stereo setup.
This demonstrates that DEIO can achieve comparable scale
estimation to these stereo setups while providing superior
state estimation results.

ECMD [3] We select the Dense_street_night_easy_a se-
quences of the ECMD dataset [3], which feature numerous
flashing lights from vehicles, street signs, buildings, and
moving vehicles (details on the website). Our DEIO runs
on the event from the DAVIS346 and the IMU sensor, while
the image frame output from the DAVIS346 is only used for
illustration purposes. Fig. 3 shows a small drift with a 4.7
m error of our estimated trajectory on the 620 m drive.

scenarios [3] and its comparison against the GNSS-INS-RTK as
ground truth. The image view is for visualization only.

4.2. Ablation Study and Runtime Analysis

Fig. 4 illustrates the real-time performance of DEIO vari-
ants under various patch configurations on an Nvidia RTX
3090 GPU. Our DEIO, configured with 96 patches per event
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Figure 4. Runtime performance (voxels per second) of our DEIO
using 48 (P48), 96 (P96), and 120 (P120) event patches per voxel,
as well as a 96-patch version without IMU input (P96 w/o IMU).
Values in the brackets indicate the average MPE (%) over all se-
quences.

voxel (P96), achieves an average processing speed of 18.4
voxels per second (VPS). Compared to the variant that ex-
cludes IMU data (P96 w/o IMU), our DEIO demonstrates a
significant accuracy improvement of 69.0%, with only a mi-
nor runtime overhead of 4.3 VPS. The P48 variant achieves
an average MPE of 0.071 while maintaining a runtime of
22.1 VPS, which is comparable to that of the P96 w/o IMU
configuration (22.7 VPS). However, increasing the num-
ber of event patches further (P120) leads to diminishing re-
turns in accuracy improvement while significantly increas-
ing computational demands.

5. Conclusion

In this paper, we propose DEIO, a deep learning-based
event-inertial odometry method. An event-based deep
neural network is utilized to provide accurate and sparse
associations of event patches over time, and DEIO
further tightly integrates it with the IMU during the
graph-based optimization process to provide robust
6 DoF pose tracking. Evaluation on fen challenging
event-based benchmarks demonstrates that DEIO out-
performs both image-based and event-based baselines.
We have shown that the learning-optimization com-
bined framework for SLAM is a promising direction.
To further enhance the robustness and efficiency of
the system, future work will focus on exploring IMU-
bias online learning, event-image complementarity, and
loop closure mechanisms for learning-based event-SLAM.
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