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Abstract

Event cameras show great potential for visual odometry
(VO) in handling challenging situations, such as fast mo-
tion and high dynamic range. Despite this promise, the
sparse and motion-dependent characteristics of event data
continue to limit the performance of feature-based or direct-
based data association methods in practical applications.
To address these limitations, we propose Deep Event Iner-
tial Odometry (DEIO), the first monocular learning-based
event-inertial framework, which combines a learning-based
method with traditional nonlinear graph-based optimiza-
tion. Specifically, an event-based recurrent network is
adopted to provide accurate and sparse associations of
event patches over time. DEIO further integrates it with
the IMU to recover up-to-scale pose and provide robust
state estimation. The Hessian information derived from
the learned differentiable bundle adjustment (DBA) is uti-
lized to optimize the co-visibility factor graph, which tightly
incorporates event patch correspondences and IMU pre-
integration within a keyframe-based sliding window. Com-
prehensive validations demonstrate that DEIO achieves su-
perior performance on 10 challenging public benchmarks
compared with more than 20 state-of-the-art methods. We
release the source code and qualitative results: https:
//kwanwaipang.github.io/DEIO/.

1. Introduction

Event cameras are motion-activated sensors that only cap-

ture pixel-wise intensity changes with microsecond preci-

sion and report them as an asynchronous stream instead of

the whole scene as an intensity image with a fixed frame

rate. Due to their remarkable properties, such as high tem-

poral resolutions, high dynamic range (HDR), and no mo-

tion blur, event cameras have the potential to enable high-

quality perception in extreme lighting conditions and high-

speed motion scenarios that are currently not accessible to

standard cameras.

*These authors contributed equally to this work.

Despite such promises, integrating event cameras into

visual odometry (VO) systems presents significant chal-

lenges. This is primarily due to the sparse, irregular, and

asynchronous nature of event data, which conveys limited

information and contains inherent noise. Moreover, due to

the motion-dependent characteristic, both feature-based and

direct-based methods easily fail in incomplete observation

or sudden variation of the event camera. Therefore, current

purely event-based VO systems [28, 36] generally lack the

robustness requirement for real-world applications. Recent

studies have introduced learning-based approaches [19, 25]

as promising solutions for event-based VO, addressing the

previously mentioned limitations by employing neural net-

works to establish robust associations. However, it is worth

noting that visual/event-only systems have inherent limi-

tations, making them vulnerable to low-textured environ-

ments or suffering from scale ambiguity. To mitigate vi-

sual degradations, a practical and promising strategy is to

incorporate the Inertial Measurement Unit (IMU), which is

low-cost and readily available in event cameras. Neverthe-

less, integrating an event-based network with IMU remains

an unexplored territory due to the challenge of efficiently

fusing the learning-based event association with IMU.

In this work, we propose Deep Event Inertial Odom-

etry (DEIO), the first deep learning-based event-inertial

odometry framework. It is developed based on a learning-

optimization framework that leverages neural networks to

predict event correspondences and tightly integrates IMU

measurements to enhance the robustness of the odometry.

More specifically, our framework decouples the neural net-

work from IMU integration and operates in two phases: (i)

an event-based recurrent network learns to provide robust

data associations of sparse event patches. (ii) The network

is tightly integrated with the IMU measurements within a

factor graph optimization framework to achieve 6-DoF pose

tracking. Our contributions are summarized as follows:

1. We propose a learning-optimization framework that

seamlessly integrates the power of deep learning with

the efficiency of factor graph optimization. To the best

of our knowledge, this is the first event-inertial odome-

try framework that employs deep learning for event data

This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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association and graph optimization for pose estimation.

2. An event-based co-visibility factor graph optimization

is proposed to tightly integrate event patch correspon-

dences and IMU pre-integration by deriving Hessian in-

formation from differentiable bundle adjustment (DBA).

3. Extensive experiments on 10 challenging event-based

real-world benchmarks demonstrate the superior perfor-

mance of DEIO compared to over 20 advanced methods.

We release the source code to facilitate further research.

2. Related Work

2.1. Traditional Event-based VO
To enhance the robustness of purely event-based VO, ex-

isting event-based SLAM methods have demonstrated good

performance by incorporating additional sensors. Notably,

event-inertial integration is a widely used approach to ad-

dress the limitations of event-only SLAM, which provides

scale awareness and continuity of estimation with mini-

mal setup requirements. Zhu et al. [40] propose the first

event-inertial odometry (EIO) method, which fuses events

with IMU through the Extended Kalman Filter. Rebecq

et al. [29] propose an optimization-based EIO that de-

tects and tracks features in the edge image, generated

from motion-compensated event streams, through tradi-

tional image-based feature detection and tracking. The

tracked features are then combined with IMU measure-

ments via keyframe-based nonlinear optimization. Mono-

EIO [13] employs the event-corner features with IMU mea-

surement to deliver real-time and accurate 6-DoF state es-

timation. Ultimate-SLAM [33] and PL-EVIO [14] inves-

tigate the complementary nature of events and images to

present an event-image-IMU odometry (EVIO). ESVIO [4]

proposes the first stereo EIO and EVIO framework to es-

timate states through temporally and spatially event-corner

feature association. ESVO2 [23, 24] extends ESVO [36]

and presents a direct method for stereo event cameras with

an IMU-aided solution. EVI-SAM [15] introduces the

first event-based hybrid pose tracking framework, merging

feature-based and direct-based methods, with IMU fusion.

2.2. Learning Event-based VO
Zhu et al. [39] pioneer the first learning-based event odom-

etry framework, utilizing an unsupervised network with a

contrast maximization loss [7]. Ye et al. [34] extend the

SfMLearner [35], which employs a depth network and pose

network for event-based optical flow estimation. However,

these methods show poor generalization beyond the train-

ing scenarios. DEVO [19] extends the DPVO [32] to ac-

commodate the event modality also through the voxel-based

representation like E-RAFT [10], demonstrating great gen-

eralization from synthetic data to seven real-world event-

based benchmarks. RAMP-VO [25] introduces an end-to-

end VO that also builds upon DPVO [32] using feature en-

coders to fuse events and image data. However, the absolute

scale is not observable in these monocular event-only sys-

tems. Visual-IMU integration is the most common solution

to address these limitations, which provides scale awareness

and continuous estimation with minimal setup. Neverthe-

less, efficiently integrating learning-based event data asso-

ciation with IMU measurements remains an open problem.

This work aims to bridge this gap by proposing a combined

learning-optimization framework.

3. Methodology
The overall design of the framework aims to tightly fuse the

learnable event-based data association with traditional IMU

pre-integration. Fig. 1 depicts the overview of our system.

For the front end, a deep neural network (Section 3.1) is

utilized to estimate the sparse patch-based correspondences

for the optical flow of events. On the back end, Hessian

information derived from the learned DBA layer is tightly

integrated with the IMU pre-integration (Section 3.2). This

design leverages the representational power of deep neu-

ral networks to achieve robust event-based data association

while simultaneously harnessing inertial measurement ben-

efits without requiring IMU training data, thereby preserv-

ing the generalization capabilities of our DEIO.

3.1. Learning-based Event Data Association
Event Encoding: Each event is represented as a tuple

(t, x, y, p), where t denotes the trigger timestamp in mi-

croseconds at the pixel (x, y) and pi indicates polarity with

p = 1 for an increase in brightness and p = −1 for a de-

crease. The event streams are divided into segments based

on a predefined temporal interval Δt. We preprocess the

event segment within an interval [ti − Δt, ti) into a ten-

sor Ei ∈ R
D×H×W using the voxel representation [39],

where D represents the number of discretization steps in

time. Therefore, the event-based optical flow estimation

from segment i to segment j fundamentally involves estab-

lishing data correspondences between Ei and Ej .

Patch Structure: The patch-based architecture [32] is

adopted to compute the flow for a set of sparse event

patches. A p× p event patch, sampled from the event voxel

E, is represented as a set of pixel coordinates P = [x,y] ∈
R

p2×2, where all pixels within the patch are assumed to

have a constant inverse depth d ∈ R+. The dynamic event

patch graph G is a bipartite graph where each edge is de-

noted as [(i, n), j], indicating the relationship between event

patch n from segment i and the target segment j. The net-

work structure for event-based data association inherits the

recurrent network from [19, 32] and consists of three pri-

mary components: (i) a feature encoder that extracts patch-

based event feature representations; (ii) a correlation layer

that computes the visual similarity; (iii) a recurrent update

4607



Pa
tc

h
Ex

tra
ct

io
n

Patch Graph

…

……

Event Feature 
Encoder

Event Voxels

Edge Correlation

Recurrent Update 
Operator

Pose Loss

Flow Loss

Score LossCamera Poses  
Depth Maps

Supervision

DBA

Event Stream

Patch Graph

Key Voxel
(Keyframe)

IMU 
Measurement

Event Voxels
Representation

Recurrent Update
Operator Event-IMU BA

IMU 
Pre-Integration

Learning-Based Event Data Association

DEIO Online System

Hessian Information
(DBA)

Figure 1. Overview of the DEIO system. It decouples network training from IMU integration and operates in two phases: offline training

and online optimization. During training, a unified event-based optical flow network is trained to provide robust data associations of sparse

event patches. At runtime, the Hessian information, derived from the DBA layer in the update operator, is utilized to tightly integrate event

patch correspondence with IMU pre-integration through an event patch-based co-visibility factor graph optimization.

operator that handles event-patch correspondences, which

estimates the 2D optical flow vector δ and the confidence

weights ω for each patch.

Differentiable Bundle Adjustment (DBA): The DBA

layer jointly refines camera poses and patch depth across

the entire patch graph G to match the predicted patch opti-

cal flow δ by the following optimization objective:

{{
T ′

ji}, {d′
in

}}
= argmin

T ,d

∑
G

‖F (T ji,din)‖2ωinj
,

F (T ji,din)=π
(
T ji ·π−1

(
P̂ in,din

))
−
(
P̂ in+δinj

) (1)

where (δinj ,ωinj) is the patch-based optical flow field pre-

dicted by the event-based recurrent network. The term

δinj ∈ R
2 denotes a 2D flow vector that indicates how the

reprojection of the event-patch center should be updated,

and ωinj serves as the patch-wise confidence weight of the

optical flow. F is the shorthand to denote the residual term

on the patch center coordinates, and ‖ ·‖ is the Mahalanobis

distance. π and π−1 are the projection and back-projection

functions of the event camera. T ji = T−1
j T i represents

the transformation from frame i to frame j, where T i,T j ∈
SE(3) denote the camera poses in the camera-to-world for-

mat. In this work, the pre-trained network weights [19] are

employed to estimate sparse event patch correspondences

due to their strong generalization.

3.2. Learnable Hessian Information Extraction
To extract the information from the learning-based event

data association and integrate it with the IMU, we linearize

Eq. (1) as follows:

F (ξji ⊕ T ji,din +Δdin)− F (T ji,din)

=
[
J ji Jdin

] [ ξji
Δdin

]
(2)

where ξji is the Lie algebras of the updated pose in (3).
Δdin denotes the updated state of the inverse depth. The

Jacobians J ji,Jdin
are the partial derivatives of F with re-

spect to the pose T ji and the inverse depth din, respectively.

An event-patch P in can be reprojected from segment i into

segment j follows the warping function:

P
′
jn=

[
xjn yjn zjn 1

]T
= T ji · π−1(P̂ in,din) (3)

where (xjn, yjn, zjn) is the center of the event patch at seg-

ment j in the event camera coordinate. J ji is expressed as:

J ji =

⎡
⎣ fx

zjn·din
0 − fxxjn

z2
jn·din

− fxxjnyjn

z2
jn

fx +
fxx

2
jn

z2
jn

− fxyjn

zjn

0
fy

zjn·din
− fyyjn

z2
jn·din

−fy − fyy
2
jn

z2
jn

fyxjnyjn

z2
jn

fyxjn

zjn

⎤
⎦

(4)

4608



where fx and fy are the given event camera intrinsic param-

eters. Jdin is given as:

Jdin
=

⎡
⎣fx( tji[0]

zjn·din
− tji[2]xjn

z2
jn·din

)

fy(
tji[1]

zjn·din
− tji[2]yjn

z2
jn·din

)

⎤
⎦ (5)

where tji is the translation vector of the related transform

between T i and T j . Therefore, the Hessian matrix of

Eq. (2) can be computed as follows:

Hji =
[
J ji Jdin

]T
W inj

[
J ji Jdin

]
(6)

where W inj = diag(ωinj). To improve readability, the no-

tation for [(i, n), j] edges in Hji and W inj will be omitted

in subsequent equations unless otherwise specified.

By decoupling the pose and depth variables, the system

can be solved efficiently using the Schur complement:

H

[
ξji

Δdin

]
= − [

J ji Jdin

]T
WF (T ji,din)[

B E

ET C

] [
ξji

Δdin

]
=

[
v
u

] (7)

Therefore, the following equation can be obtained:

ξij = [B −EC−1ET ]−1︸ ︷︷ ︸
Hg

(v −EC−1u)︸ ︷︷ ︸
V g

(8)

where B is the matrix with size of 60×60, E is the residual

matrix with size of 60×960, and C is a diagonal matrix with

size of 960×960. A damping factor of 10−4 is also applied

to C as [32]. These matrices establish an interframe pose

constraint (represented by Hg and V g) that integrates the

DBA information. After updating the camera poses T ′
ji =

Exp(ξji)T ji, the inverse depth of each event patch can be

updated as:

d′
in = Δdin + din

Δdin = C−1(u−ET ξji)
(9)

The calculations of Eq. (8) and Eq. (9) can be efficiently

performed in parallel on a GPU with CUDA acceleration.

All the Hessian information Hg and the corresponding V g ,

derived from the co-visibility graph, are integrated into the

factor graph where they are optimized on the CPU. The

DBA contributes extensive geometric information, incorpo-

rating learned uncertainties, to the factor graph. The opti-

mization results (updated poses and depths) are then itera-

tively fed back to refine the event-based optical flow net-

work.

3.3. Event-IMU Combined Bundle Adjustment
Unlike end-to-end approaches that use deep networks to

fuse the features from two modalities (visual and IMU)

and predict poses directly, our DEIO combines the neu-

ral networks with event-inertial bundle adjustment. To this

end, we design a learning-optimization combined frame-

work that tightly integrates the Hessian information from

DBA and IMU pre-integration within keyframe-based slid-

ing window optimization. The full state vector of the kth

keyframe in the sliding window (with the total number of

keyframes K = 10 in our implementation), is defined as:

χ = [Tw
bk
,vw

bk
, bak

, bgk ], k = 1, 2, 3, ... (10)

where Tw
bk

=

[
Rw

bk
twbk

0 1

]
∈ SE(3) is the pose of the body

(IMU) frame in the world frame, given by the translation twbk
and rotation matrix Rw

bk
. vw

bk
is the velocity of the IMU in

the world frame. bak
and bgk are the accelerometer bias and

gyroscope bias, respectively. We solve the state estimation

problem by constructing a factor graph with the GTSAM li-

brary and optimizing it with the Levenberg-Marquardt. The

cost function can be written as:

J(χ)= ||rkevent||2Wk
event

+

K−1∑
k=0

||rkimu||2Wk
imu
+||rm||2Wm

(11)

Eq. (11) contains the event-based residuals rkevent with

weight W k
event, the IMU pre-integration residuals rkimu with

weight W k
imu, and the marginalization residuals rm with

weight Wm. Given the Hessian information Hg and the

corresponding V g , the event residual factor can be written

as:

rkevent =
1

2

[
ξwe0 · · · ξwe10

]
Hg

⎡
⎢⎣
ξwe0

...

ξwe10

⎤
⎥⎦

− [
ξwe0 · · · ξwe10

]
V g

(12)

where ξwek = ξeb ·ξwbk , and ξwbk = logSE(3)(T
w
bk
). ξwek and ξwbk

are the Lie algebras of the event camera pose and IMU pose

in kth keyframe, respectively. ξeb is the extrinsics between

the event camera and IMU.

Eventually, the IMU residual factor can be derived as

follows:

rkimu=

⎡
⎢⎢⎢⎢⎢⎢⎣

Rbk
w (twbk+1

− twbk − vw
bk
Δt− 1

2g
wΔt2)−α̂bk

bk+1

Rbk
w (vw

bk+1
− vw

bk
− gwΔt)− β̂

bk
bk+1

2
[
(qw

bk
)−1 ⊗ qw

bk+1
⊗ (γ̂bk

bk+1
)−1

]
xyz

bak+1
− bak

bgk+1
− bgk

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

where αbk
bk+1

, βbk
bk+1

, γbk
bk+1

are the IMU pre-integration

term [14]; gw is the gravity vector; Δt is the time inter-

val between keyframe k and k + 1; qbk
w is the quaternion of

the corresponding rotation matrix Rbk
w with [·]xyz extracts

the vector portion.
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Table 1. Accuracy comparison [MPE(%)] of our DEIO in DAVIS240c dataset [22]. The estimated trajectory is aligned with the ground

truth over the first 5 seconds.

Methods Modality boxes translation hdr boxes boxes 6dof dynamic translation dynamic 6dof poster translation hdr poster poster 6dof Average

Zhu et al. [40] E+I 2.69 1.23 3.61 1.90 4.07 0.94 2.63 3.56 2.58

Henri et al. [29] E+I 0.57 0.92 0.69 0.47 0.54 0.89 0.59 0.82 0.69

Ultimate-SLAM [33] E+I 0.76 0.67 0.44 0.59 0.38 0.15 0.49 0.30 0.47

Jung et al. [17] E+I 1.50 2.45 2.88 4.92 6.23 3.43 2.38 2.53 3.29

HASTE-VIO [1] E+I 2.55 1.75 2.03 1.32 0.52 1.34 0.57 1.50 1.45

EKLT-VIO [21] E+F+I 0.48 0.46 0.84 0.40 0.79 0.35 0.65 0.35 0.54

Dai et al. [5] E+I 1.0 1.8 1.5 0.9 1.5 1.9 2.8 1.2 1.58

Mono-EIO [13] E+I 0.34 0.40 0.61 0.26 0.43 0.40 0.40 0.26 0.39

Kai et al. [31] E+I 0.36 0.31 0.32 0.59 0.49 0.23 0.18 0.31 0.35

PL-EVIO [14] E+F+I 0.06 0.10 0.21 0.24 0.48 0.54 0.12 0.14 0.24

Lee et al. [20] E+F+I 0.74 0.69 0.77 0.71 0.86 0.28 0.52 0.59 0.65

EVI-SAM [15] E+F+I 0.11 0.13 0.16 0.30 0.27 0.34 0.15 0.24 0.21

DPVO [32] F 0.02 0.71 0.59 0.09 0.05 0.20 0.49 0.44 0.32

DBA-Fusion [37] F+I 0.07 0.27 0.10 0.56 0.11 0.13 0.38 0.19 0.23

DEVO [19] E 0.06 0.06 0.71 0.09 0.08 0.06 0.14 0.44 0.21

DEIO E+I 0.07 0.09 0.05 0.06 0.04 0.04 0.06 0.08 0.06

Table 2. Accuracy comparison [MPE(%)] of our DEIO in the Mono-HKU dataset [13]. The estimated trajectory is aligned with the ground

truth over the first 5 seconds.

Resolution Methods Modality
vicon

hdr1

vicon

hdr2

vicon

hdr3

vicon

hdr4

vicon

darktolight1

vicon

darktolight2

vicon

lighttodark1

vicon

lighttodark2

vicon

dark1

vicon

dark2
Average

DAVIS346

(346×260)

ORB-SLAM3 [2] F 0.32 0.75 0.60 0.70 0.75 0.76 0.41 0.58 failed 0.60 0.61

VINS-MONO [26] F+I 0.96 1.60 2.28 1.40 0.51 0.98 0.55 0.55 0.88 0.52 1.02

DBA-Fusion [37] F+I 0.32 0.41 failed failed 0.72 0.55 failed 2.65 3.32 failed 1.33

Ultimate-SLAM [33] E+I 1.49 1.28 0.66 1.84 1.33 1.48 1.79 1.32 1.75 1.10 1.40

Ultimate-SLAM [33] E+F+I 2.44 1.11 0.83 1.49 1.00 0.79 0.84 1.49 3.45 0.63 1.41

Mono-EIO [13] E+I 0.59 0.74 0.72 0.37 0.81 0.42 0.29 0.79 1.02 0.49 0.62

PL-EIO [14] E+I 0.57 0.54 0.69 0.32 0.66 0.51 0.33 0.53 0.35 0.38 0.49

PL-EVIO [14] F+E+I 0.17 0.12 0.19 0.11 0.14 0.12 0.13 0.16 0.43 0.47 0.20

DEVO [19] E 0.11 0.07 0.12 0.07 0.97 0.12 0.15 0.12 0.07 0.07 0.19

DEIO E+I 0.14 0.09 0.16 0.07 0.11 0.10 0.11 0.13 0.05 0.08 0.10

4. Experiments

We conduct quantitative and qualitative evaluations of our

DEIO across ten challenging real-world datasets with vary-

ing camera resolution and diversity scenarios on different

platforms. Specifically, in Section 4.1, we compare DEIO

with baseline methods across multiple challenging event

datasets, showcasing its superior performance and excep-

tional generalization capabilities. Section 4.2 provides a

time efficiency evaluation of DEIO. Finally, the project

website provides video demos and the qualitative results as

supplementary material.

4.1. Comparisons with SOTA Methods in Challenge
Benchmarks

To ensure a fair comparison, a consistent trajectory align-

ment protocol is required. Therefore, we employ differ-

ent alignment ways and evaluation criteria according to the

compared baseline methods, including the mean position er-

ror (MPE), and the root mean squared error (RMSE) / Ab-

solute Trajectory Errors (ATE), using the publicly available

trajectory evaluation tool [12]. The notations E, F, and I

in each table represent the use of event, frame, and IMU,

respectively.

DAVIS240C [22]: As shown in Table 1, EVI-SAM

achieves the best performance among the non-learning

methods. In contrast, learning-based methods (such as

DEVO) can achieve performance comparable to EVI-SAM

(which combines both direct and feature-based methods)

using purely event sensors, highlighting the effectiveness

and strength of learning-based approaches. Meanwhile,

our learning-optimization combined method exhibits signif-

icantly superior performance compared to other learning-

based methods (DPVO, DBA-Fusion, and DEVO). Com-

pared to DEVO, our proposed DEIO reduces the pose track-

ing error by up to 71%, owing to the effective integration of

learning-based and traditional optimization methods.

Monocular HKU-dataset [13]: Table 2 demonstrates

that DEIO outperforms all the event-based methods and de-

creases the average pose tracking error by at least 47%. As

illustrated in the project website, the estimated trajectory of

DEVO suffers from significant scale loss because the ab-

solute scale cannot be observed in monocular event-only

odometry. In contrast, our DEIO, despite also being based

on a monocular setup, effectively overcomes scale ambi-

guity and aligns closely with the ground truth trajectory.

This improvement is attributed to the effective compensa-

tion provided by the IMU.
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Table 3. Accuracy comparison [MPE(%)] of our DEIO in the Stereo-HKU dataset [4]. The entire sequence of estimated poses is aligned

with the ground truth trajectory. The DPVO, DEVO are taken from [19], and the results of Kai et al. are taken from [31].

Methods Modality agg translation agg rotation agg flip agg walk hdr circle hdr slow hdr tran rota hdr agg dark normal Average

ORB-SLAM3 [2] Stereo F+I 0.15 0.35 0.36 failed 0.17 0.16 0.30 0.29 failed 0.25

VINS-Fusion [27] Stereo F+I 0.11 1.34 1.16 failed 5.03 0.13 0.11 1.21 0.86 1.24

DPVO [32] F 0.07 0.04 0.99 1.17 0.31 0.23 0.67 0.29 failed 0.47

DBA-Fusion [37] F+I 0.13 0.16 0.83 0.37 0.18 failed failed 0.10 0.27 0.29

Kai et al. [31] E+I 0.21 0.28 0.81 0.35 0.71 0.43 0.50 0.27 0.52 0.45

PL-EVIO [14] E+F+I 0.07 0.23 0.39 0.42 0.14 0.13 0.10 0.14 1.35 0.33

EVI-SAM [15] E+F+I 0.17 0.24 0.32 0.26 0.13 0.11 0.11 0.10 0.85 0.25

ESIO [4] Stereo E+I 0.55 0.78 3.17 1.30 0.46 0.31 0.91 1.41 0.35 1.03

ESVIO [4] Stereo E+F+I 0.10 0.17 0.36 0.31 0.16 0.11 0.10 0.10 0.42 0.20

DEVO [19] E 0.06 0.05 0.71 0.90 0.39 0.08 0.08 0.26 0.06 0.29

DEIO E+I 0.06 0.09 0.20 0.48 0.14 0.07 0.09 0.06 0.11 0.14

Table 4. Accuracy comparison [MPE(%)] of our DEIO in VECtor dataset [8]. The entire sequence of estimated poses is aligned with the

ground truth trajectory.

Methods Modality
corner-

slow

desk-

normal

sofa-

fast

mountain-

fast

corridors-

dolly

corridors-

walk

units-

dolly

units-

scooter
average

ORB-SLAM3 [2] Stereo F+I 1.49 0.46 0.21 2.11 1.03 1.32 7.64 6.22 2.56

VINS-Fusion [27] Stereo F+I 1.61 0.47 0.57 failed 1.88 0.50 4.39 4.92 2.05

DPVO [32] F 0.30 0.09 0.07 0.11 0.56 0.54 1.52 1.67 0.61

DBA-Fusion [37] F+I 1.72 0.48 0.43 failed 1.37 0.59 1.23 0.48 0.90

EVO [28] E 4.33 failed failed failed failed failed failed failed 4.33

ESVO [36] Stereo E 4.83 failed failed failed failed failed failed failed 4.83

Ultimate-SLAM [33] E+F+I 4.83 2.24 2.54 4.13 failed failed failed failed 3.44

PL-EVIO [14] E+F+I 2.10 3.66 0.17 0.13 1.58 0.92 5.84 5.00 2.43

ESVIO [4] Stereo E+F+I 1.49 0.61 0.17 0.16 1.13 0.43 3.43 2.85 1.28

EVI-SAM [15] E+F+I 2.50 1.45 0.98 0.38 1.58 1.27 0.59 0.83 1.20

DEVO [19] E 0.59 0.11 0.38 0.37 0.51 1.04 0.48 0.88 0.55

DEIO E+I 0.50 0.13 0.44 0.24 0.78 0.74 0.35 0.35 0.44

Stereo HKU-dataset [4]: In Table 3, our method out-

performs all previous works in terms of average positioning

error. Note that event-only VO methods, such as EVO [28],

ESVO [36], as well as stereo event and IMU-based methods

like ESVO2 [23, 24], fail to perform successfully on any of

the sequences in this dataset. Moreover, DEIO beats DEVO

and increases the average accuracy of the sequences up to

48%.

VECtor [8]: As presented in Table 4, our proposed

DEIO achieves remarkable results on average. It surpasses

all image-based baselines with high-quality frames (im-

age 1224×1024 vs event 640×480) and even outperforms

Ultimate-SLAM, PL-EVIO, ESVIO, and EVI-SAM on over

75% of the sequences, which utilize event, image, and IMU.

Our DEIO also outperforms DEVO on average in large-

scale sequences, thanks to the complementary integration of

the event and IMU sensors, while other monocular visual-

only methods struggle with scale ambiguity and drift.

TUM-VIE [18]: The results in Table 5 demonstrate that

DEIO outperforms all other methods on four out of five se-

quences, despite DH-PTAM [30] utilizing four cameras of

the setup (stereo events and stereo images). Our DEIO sig-

nificantly outperforms ESVO2 [4, 24] and improves average

accuracy by up to 79%. Notably, ESVO2 relies on stereo

Table 5. Accuracy comparison [ATE/RMSE (cm)] of our DEIO in

TUM-VIE dataset [18]. The entire sequence of estimated poses is

aligned with the ground truth trajectory. The EVO, ESVO, and ES-

PTAM are taken from [11], DH-PTAM and Ultimate-SLAM are

sourced from [30], DEVO is from [19], and ESVIO AA, ESVO2

are from [24].

Methods Modality
mocap-

Average
1d-trans 3d-trans 6dof desk desk2

EVO [28] E 7.5 12.5 85.5 54.1 75.2 47.0

ESVO [36] Stereo E 12.3 17.2 13.0 12.4 4.6 11.9

ESVIO AA [23] Stereo E+I 3.9 18.9 failed 9.00 9.5 10.3

ESVO2 [24] Stereo E+I 3.3 7.3 3.2 6.2 4.0 4.8

ES-PTAM [11] Stereo E 1.05 8.53 10.25 2.5 7.2 5.9

DH-PTAM [30] Stereo E+F 10.3 0.7 2.4 1.6 1.5 3.3

Ultimate-SLAM [33] E+F+I 3.9 4.7 35.3 19.5 34.1 19.5

DEVO [19] E 0.5 1.1 1.6 1.7 1.0 1.2

DEIO E+I 0.4 1.1 1.4 1.4 0.7 1.0

event and IMU setup, while our DEIO achieves superior re-

sults using only a monocular event camera and IMU. This

highlights that our approach, using only a monocular event

camera and IMU, can recover scale comparable to that of a

stereo event setup.

EDS [16]: As shown in Table 6, our DEIO outper-

forms the image-based baselines, including ORB-SLAM3,

DPVO, and DBA-Fusion. Moreover, DEIO achieves an av-

erage improvement of 30% over DEVO and demonstrates
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Table 6. Accuracy comparison [ATE/RMSE (cm)] of our DEIO in EDS dataset [16]. The entire sequence of estimated poses is aligned

with the ground truth trajectory. The ORB-SLAM3, DPVO, and DEVO are taken from [19], while RAMP-VO is sourced from [25].

Methods Modality peanuts dark peanuts light peanuts run rocket dark rocket light ziggy ziggy hdr ziggy flying all chars Average

ORB-SLAM3 [2] Stereo F+I 6.15 27.26 16.83 10.12 32.53 26.92 81.98 20.57 21.37 27.08

DPVO [32] F 1.26 12.99 25.48 27.41 63.11 14.86 66.17 10.85 95.87 35.33

DBA-Fusion [37] F+I 7.26 149.36 134.92 114.24 117.09 173.50 140.51 11.81 126.36 108.34

DEVO [19] E 4.78 21.07 38.10 8.78 59.83 11.84 22.82 10.92 10.76 20.99

RAMP-VO [25] E+F 1.20 9.03 13.19 7.20 17.53 19.05 28.78 6.35 28.61 14.55
DEIO E+I 1.77 16.27 19.96 8.91 15.41 10.39 23.82 3.84 31.55 14.66

Figure 2. The estimated trajectories (X, Y, Z, Roll, Pitch, Yaw) of our DEIO against the GT in the sequence of indoor forward 7 from the

UZH-FPV [6] dataset. The image view (visualization-only) demonstrates the condition under low texture, HDR, and motion blur.

performance comparable to RAMP-VO, a learning-based

VO system that leverages both event and image modalities.

In the case of DBA-Fusion [37], despite operating within a

dense learning-based VIO framework, DEIO demonstrates

superior performance, showing the distinct advantages of

event cameras in challenging scenarios.

UZH-FPV [6]: As shown in Table 7 and Fig. 2, this

dataset poses significant challenges for existing methods,

with even advanced learning-based VO approaches like

DPVO failing to maintain reliable tracking across all se-

quences. Additionally, incorporating IMU measurements

does not resolve these challenges, such as learning-based

VIO methods (DBA-Fusion), which also fail to complete

any sequences. This is due to the motion blur caused by

rapid movement, which makes it difficult to effectively es-

tablish data association for the image sensor, even if these

methods are equipped with a powerful learning network.

In contrast, our DEIO achieves higher average performance

than all baseline methods, demonstrating greater resilience

to the fast flight conditions.

MVSEC [38]: In Table 8, DEIO surpasses the event-

based baseline, especially for the Flying 4, where it attains

an RMSE of 40% lower than DEVO. Although ESVIO [4]

employs a setup integrating stereo images, stereo events,

and IMU data, DEIO, which relies solely on monocular

Table 7. Accuracy comparison [MPE (%)] of our DEIO in UZH-

FPV dataset [6]. The entire sequence of estimated poses is aligned

with the ground truth trajectory. The DPVO, DEVO are taken

from [19].

Methods Modality
Indoor forward

Average
3 5 6 7 9 10

VINS-Fusion [27] Stereo F+I 0.84 failed 1.45 0.61 2.87 4.48 2.05

ORB-SLAM3 [2] Stereo F+I 0.55 1.19 failed 0.36 0.77 1.02 0.78

DPVO [32] F failed failed failed failed failed failed —

VINS-MONO [26] F+I 0.65 1.07 0.25 0.37 0.51 0.92 0.70

DBA-Fusion [37] F+I failed failed failed failed failed failed —

Ultimate SLAM [33] E+F+I failed failed failed failed failed failed —

PL-EVIO [14] E+F+I 0.38 0.90 0.30 0.55 0.44 1.06 0.61

DEVO [19] E 0.37 0.40 0.31 0.50 0.61 0.52 0.45

DEIO E+I 0.39 0.36 0.33 0.32 0.59 0.55 0.42

event data and IMU, demonstrates an average accuracy im-

provement of over 80% compared to ESVIO. As for the

learning-based VIO method (DBA-Fusion) that relies on

dense data association, it failed on three out of the four se-

quences. This indicates that even though the deep learn-

ing methods can provide strong data association capabili-

ties, the degradation of images in challenging environments

limits their performance compared to the event modality.

DSEC [9]: As presented in Table 9, our DEIO outper-

forms the stereo event methods (ES-PTAM, ESVO, ES-

VIO AA, and ESIO) by large margins on all sequences (at
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Table 8. Accuracy comparison [MPE (%)] of our DEIO in

MVSEC dataset [38]. The entire sequence of estimated poses is

aligned with the ground truth trajectory. The DEVO result is taken

from [19].
Methods Modality Flying 1 Flying 2 Flying 3 Flying 4 Average

ORB-SLAM3 [2] Stereo F+I 5.31 5.65 2.90 6.99 5.21

VINS-Fusion [27] Stereo F+I 1.50 6.98 0.73 3.62 3.21

EVO [28] E 5.09 failed 2.58 failed 3.84

ESVO [36] Stereo E 4.00 3.66 1.71 failed 3.12

Ultimate-SLAM [33] E+F+I failed failed failed 2.77 2.77

PL-EVIO [14] E+F+I 1.35 1.00 0.64 5.31 2.08

ESVIO [4] Stereo E+F+I 0.94 1.00 0.47 5.55 1.99

DBA-Fusion [37] F+I 2.20 failed failed failed 2.20

DEVO [19] E 0.26 0.32 0.19 1.08 0.46

DEIO E+I 0.24 0.21 0.12 0.78 0.34

Table 9. Accuracy comparison [ATE/RMSE (cm)] of our DEIO

in DSEC dataset [9]. The entire sequence of estimated poses

is aligned with the ground truth trajectory. The ESVO and ES-

VIO AA are taken from [23], and ES-PTAM is sourced from [11].

Methods Modality
dsec zurich city 04

Average
a b c d e

ESVO [36] Stereo E 371.1 116.6 1357.1 2676.6 794.9 1063.3

ESVIO AA [23] Stereo E+I 105.0 66.7 637.9 699.8 130.3 327.9

ES-PTAM [11] Stereo E 131.62 29.02 1184.37 1053.87 75.9 495.0

ESIO [4] Stereo E+I 543.5 295.1 896.2 2977.0 2326.4 1407.6

ESVIO [4] Stereo E+F+I 371.2 445.8 1892.7 921.7 352.0 796.7

DEIO E+I 80.6 35.4 413.8 207.6 86.1 164.7

least 66.7% lower RMSE). The results from our DEIO align

more closely with the ground truth, despite using a monoc-

ular setup, while the other methods employ a stereo setup.

This demonstrates that DEIO can achieve comparable scale

estimation to these stereo setups while providing superior

state estimation results.

ECMD [3] We select the Dense street night easy a se-

quences of the ECMD dataset [3], which feature numerous

flashing lights from vehicles, street signs, buildings, and

moving vehicles (details on the website). Our DEIO runs

on the event from the DAVIS346 and the IMU sensor, while

the image frame output from the DAVIS346 is only used for

illustration purposes. Fig. 3 shows a small drift with a 4.7

m error of our estimated trajectory on the 620 m drive.

A

B

B A

GT DEIO

Figure 3. The estimated trajectory of our DEIO in the night driving

scenarios [3] and its comparison against the GNSS-INS-RTK as

ground truth. The image view is for visualization only.

4.2. Ablation Study and Runtime Analysis
Fig. 4 illustrates the real-time performance of DEIO vari-

ants under various patch configurations on an Nvidia RTX

3090 GPU. Our DEIO, configured with 96 patches per event
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Figure 4. Runtime performance (voxels per second) of our DEIO

using 48 (P48), 96 (P96), and 120 (P120) event patches per voxel,

as well as a 96-patch version without IMU input (P96 w/o IMU).

Values in the brackets indicate the average MPE (%) over all se-

quences.

voxel (P96), achieves an average processing speed of 18.4

voxels per second (VPS). Compared to the variant that ex-

cludes IMU data (P96 w/o IMU), our DEIO demonstrates a

significant accuracy improvement of 69.0%, with only a mi-

nor runtime overhead of 4.3 VPS. The P48 variant achieves

an average MPE of 0.071 while maintaining a runtime of

22.1 VPS, which is comparable to that of the P96 w/o IMU

configuration (22.7 VPS). However, increasing the num-

ber of event patches further (P120) leads to diminishing re-

turns in accuracy improvement while significantly increas-

ing computational demands.

5. Conclusion
In this paper, we propose DEIO, a deep learning-based
event-inertial odometry method. An event-based deep
neural network is utilized to provide accurate and sparse
associations of event patches over time, and DEIO
further tightly integrates it with the IMU during the
graph-based optimization process to provide robust
6 DoF pose tracking. Evaluation on ten challenging
event-based benchmarks demonstrates that DEIO out-
performs both image-based and event-based baselines.
We have shown that the learning-optimization com-
bined framework for SLAM is a promising direction.
To further enhance the robustness and efficiency of
the system, future work will focus on exploring IMU-
bias online learning, event-image complementarity, and
loop closure mechanisms for learning-based event-SLAM.
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