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Overview

This supplementary material provides detailed descriptions
of the methods employed by the 4th and 5th place teams
in the SIS-Challenge. Due to space constraints in the main
paper, these contributions are presented here in full detail.

6. Additional Challenge Teams and Methods

6.1. Team 4: Shlee

6.1.1. Description

To address the challenge [6], the team specifically focuses
on handling background noise in existing event-based in-
stance segmentation methods. Event cameras inherently
produce various types of noise, but here they focus on
background noise, especially that caused by nearby light
sources, which degrade performance in tasks such as object
detection, tracking, and segmentation [5, 9]. In E2VID [12],
during voxelization, the number of events in each voxel
directly influences the quality of the reconstructed image.
To mitigate this issue, the team employs a two-component
Gaussian mixture model [3] to separate noisy events from
informative ones, resulting in low- and high-frequency clus-
ters. The filtered events are then converted into recon-
structed images via E2VID. These images are passed to an
object detector to produce denoised intensity images.
These images are used to fine-tune a YOLOV8 [7] de-
tector, which outputs bounding boxes for each object. The
resulting bounding boxes serve as prompts for the SAM2
[11] model, which predicts instance segmentation masks.
Finally, an XMem [2] tracker is applied to link object in-
stances across frames, producing a unified spatio-temporal
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Figure 1. (Team 4). Comparison between the baseline frame (a)
and the reconstructed frame (b).

segmentation and tracking output.

6.1.2. Implementation Details

Data processing begins by identifying, for each image
frame, the first event whose timestamp matches that frame.
The team then applies a fixed-size event count window of
30,000 events centered on this event, collecting events both
before and after to form the input set. This event subset
is then passed to their event-count-based GMM clustering
(k = 2), which generates a low-frequency cluster and a
high-frequency cluster, with means 7 and po, respectively.
They compute the absolute difference of these means,

Ap = |p1 — pal, 1)

and compare it to a threshold 7 = 2.5. In other words:
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After selecting clusters according to this rule, they voxelize
the chosen events and feed them into the E2VID model for
reconstruction, as shown in Fig. 2.
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Figure 2. (Team 4). Illustration of (a) events, (b) GMM clustering
result, (c) voxelized events, and (d) final reconstructed frame.

The detector is a YOLOv8n model initialized with
MouseSIS YOLO e2vid pretrained weights and fine-tuned
on those reconstructed frames. Training runs for 300 epochs
with batch size of 32, an initial learning rate of 0.001, a fi-
nal learning rate of 0.0001, and weight decay is 5 x 10~*
on two RTX 3090 GPUs.

The team adopts SAM2 as a segmenter. YOLO-
generated bounding boxes are provided as prompts to
SAM?2 to generate a binary mask for each frame. The re-
sulting masks are produced once and utilized for down-
stream processing without updating the detector, as shown
in Fig. 3.
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Figure 3. Team 4. Architecture overview of the proposed method.

6.1.3. Results

The method achieves a combined HOTA of 54.01 on the test
set. Detailed per-sequence results are shown in Table 1.

6.2. Team 5: vivien

6.2.1. Description

Space-time Instance Segmentation (SIS) is crucial for de-
tailed behavioral analysis, particularly in studies involv-
ing laboratory animals like mice. The MouseSIS dataset
[6], used in this challenge, provides rich multi-modal data
from grayscale frames and event-based cameras, whose

Sequence MOTA?T IDF11T HOTAT DetAT AssAfT
10 0.754 0.647 0.536 0.619 0.470
16 0.592 0.718 0.501 0.533 0471
22 0.425 0.568 0.387 0442 0.343
26 0.242 0.438 0.404 0415  0.408
28 0.544 0.756  0.576 0.530 0.626
32 0.913 0954  0.741 0.728  0.756

Combined  0.606 0.677 0540 0549 0.535

Table 1. (Team 4). Per-sequence and combined results for MOTA,
IDF1, HOTA, DetA, and AssA.
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Figure 4. Team 5. Overall pipeline of the method, highlighting
modifications to the ModelMixSort baseline.

advantages have been extensively surveyed [4]. The of-

ficial ModelMixSort baseline [6] employs a tracking-by-

detection paradigm inspired by methods like SORT [1], in-
tegrating YOLOVS8 for object detection, SAM for instance
segmentation and XMemSort for tracking.

The team’s work was motivated by the opportunity to
enhance several aspects of this baseline:

* Segmentation Model and Mask Quality: The base-
line SAM implementation relies on the ‘transformers’ li-
brary and ‘facebook/sam-vit-huge’ [8], selecting a mask
from multiple predictions based on IoU scores. The team
hypothesized that utilizing a more recent SAM variant,
SAM2.1, through the ‘ultralytics.SAM’ implementation
with its direct mask output, could offer improved seg-
mentation accuracy and potentially more consistent mask
quality.

e Tracking Persistence: The XMemSort tracker in the
baseline has a max_age of 1, meaning a track is termi-
nated if it’s not matched for more than a single frame. For
dynamic mouse movements, this might be too aggressive,
leading to premature track termination and increased ID
switches. The team aimed to optimize this parameter for
better tracking continuity.

6.2.2. Implementation Details

The method adheres to the tracking-by-detection framework
established by ModelMixSort. The overall pipeline is illus-
trated in Fig. 4.
The key stages are:
1. Data Preprocessing: Event streams are converted into
intensity frames using E2VID [12].
2. Dual-Path Detection & Segmentation:
* YOLOV8 [7] detects mice in grayscale frames and



E2VID frames, providing bounding box proposals.

* SAM2.1 [14] takes these bounding boxes as prompts
to generate precise instance segmentation masks for
each detected mouse.

3. Detection Fusion: Masks from the grayscale and
E2VID pathways are merged using Non-Maximum Sup-
pression (NMS).

4. Tracking: The fused instance masks are fed into the
XMemSort tracker (an adaptation of XMem [2] with a
SORT-like management logic).

5. Output: The final output consists of per-frame instance
segmentation masks with consistent temporal IDs.

Data Preprocessing. The primary preprocessing step
involves converting the raw event data from the DVS cam-
era into a sequence of intensity frames. This is achieved
using the E2VID model [12], as provided in the baseline
framework. These E2VID-reconstructed frames are then
synchronized with the standard grayscale video frames for
subsequent processing. No other significant modifications
were made to the data preprocessing stage of the baseline.

Detection Module (with SAM2.1). The detection mod-
ule is responsible for identifying and segmenting individual
mice in each frame from both grayscale and E2VID modal-
ities.

Initial Object Detection with YOLOVS. Following the
baseline, the team employs two instances of the YOLOvVS
object detector:

* One detector is applied to the standard grayscale frames.

* Another detector is applied to the E2VID-reconstructed
frames.

Both detectors are pre-trained and produce bounding boxes

corresponding to potential mouse instances. These boxes

serve as prompts for the subsequent segmentation stage.

Accurate Instance Segmentation with SAM2.1. A

core modification in the approach is the change in the
SAM implementation and model. The baseline utilizes
‘facebook/sam-vit-huge’ [8], selecting the final mask
from multiple predictions based on SAM’s internally
predicted IoU scores.
The team replaced this with the ‘ultralytics.SAM’ imple-
mentation. The YOLOvS8-generated bounding boxes are
directly used as prompts for the ‘predict’ method of this
SAM2.1 model, which then outputs the final segmentation
masks. This change aims to leverage the potentially im-
proved segmentation performance and a more streamlined
mask generation process of the ‘ultralytics.SAM’ library
with SAM2.1.

Tracking Module (with Refined XMem configuration).
The tracking module associates the fused instance masks
across consecutive frames, assigning consistent temporal

IDs. The team uses the XMemSort tracker, which integrates
the XMem video object segmentation model with a SORT-
like track management system.

Core Tracking Mechanism. XMemSort takes the set
of unique instance masks from the detection fusion stage as
input for each frame. It maintains a set of active tracks and
attempts to associate new detections with existing tracks
based on mask IoU. For matched tracks, XMem updates the
mask. For unmatched detections, new tracks are initialized.

Parameter Optimization. The primary optimization
in the tracking module involves the max age parameter of
XMemSort. This parameter defines the maximum number
of consecutive frames a track can remain unmatched before
it is terminated.

* Baseline max_age:
tracker:max_age to 1.
* Team’s max_age: The team increased this value to 2 in
their configuration.
The rationale for increasing max age from 1 to 2 is to pro-
vide slightly more persistence to tracks. With max'age: 1,
a track is deleted if it is not matched in the very next frame.
By changing it to 2, a track can survive one missed frame
and potentially be re-associated in the subsequent frame.
This can be beneficial for handling very brief occlusions
or momentary detection failures, thus improving track con-
tinuity for the dynamic movements of mice.

The min'hits parameter (number of consecutive
matches required to activate a track) was kept at 3, and
the iou'threshold for matching detections to tracks within
XMemSort (configured under tracker:iou'threshold) was
kept at 0.3, consistent with the baseline.

The baseline configuration sets

Inference Procedure
1. The script loads the configuration from the specified

YAML file, which defines data paths, model paths, and

key parameters like NMS IoU threshold and tracker set-

tings.
2. For each sequence in the specified split :

* Grayscale frames are loaded from HDFS5 files.

* E2VID frames are pre-loaded from their respective di-
rectories.

e The SamYoloDetector (utilizing YOLOvV8 and the
team’s SAM2.1 setup) is instantiated separately for
grayscale and E2VID data.

e The XMemSort tracker is initialized with the team’s
optimized parameters (max_age: 2, min_hits: 3,
iou_threshold: 0.3).

* Per frame, detections are obtained from both grayscale
and E2VID paths using the respective detectors.

* These detections are fused using NMS.

* The fused masks are passed to the XMemSort tracker,
which updates track states and assigns IDs.

* Results (segmentation masks and track IDs per frame)



are formatted into the COCO-like JSON structure.

3. Finally, results from all processed sequences are aggre-
gated into a single final results.json file for submission
and evaluation.

4. Visualization of predictions per frame was enabled dur-
ing processing for debugging and qualitative assessment.

6.2.3. Results

Experimental Setup

e Dataset: The experiments were conducted on the
MouseSIS Challenge Dataset [6].

* Evaluation Metrics: Performance was evaluated us-
ing standard multi-object tracking metrics, including
HOTA [10], CLEAR MOT [10], and IDF1 [13].

* Software Environment: The implementation is based on
Python. Key libraries include PyTorch for deep learning
models, Ultralytics (for YOLOvVS and SAM2.1), OpenCV
for image processing, NumPy for numerical operations,
h5py for data loading, and PyYAML for configuration
management. All experiments were run on a Linux op-
erating system.

e Hardware: Experiments were conducted on a system
equipped with a 14-core Intel(R) Xeon(R) Gold 6330
CPU @ 2.00GHz, 90 GB of RAM, and a single NVIDIA
RTX 3090 GPU with 24GB VRAM.

Main Challenge Performance. The team’s performance
on the official test set of the SIS Challenge is reported in
Tab. 1.

Ablation Studies and Parameter Analysis. All ablation
studies were conducted on the combined MouseSIS valida-
tion sequences (03, 04, 12, 25).

Impact of SAM2.1 vs. Original SAM: To isolate the
effect of upgrading the segmentation model, the team
compared the original SAM with their modification using
SAM2.1 (ultralytics.SAM) while keeping other key pa-
rameters consistent with the original baseline configura-
tion. The results are shown in Tab. 2. The introduction
of SAM2.1 led to substantial improvements across all ma-
jor metrics, with HOTA increasing by 24.44% and IDF1 by
28.00%. This highlights the significant benefit of the newer
segmentation model and the team’s chosen implementation
for this task.

Configuration HOTAT MOTAT IDF1t
Baseline (SAM) 0.45 0.62 0.50
Team’s (SAM2.1) 0.56 0.74 0.64
Improvement (%) +24.44  +19.35  +28.00

Table 2. (Team 5). Ablation Study: Original SAM vs. SAM2.1
(Validation Set, Combined).

Sensitivity to XMemSort’s max_age Parameter: The
team investigated the impact of the XMemSort’s max_age
parameter. These experiments were conducted using
SAM?2.1. The baseline configuration for max_age was 1.
The team tested max_age values of 2 and 3.

max_age HOTAT AssAT IDF1T MOTAT IDSW|
1 0.557 0.512  0.638 0.740 96
2 0.560 0.516  0.657 0.742 80
3 0.583 0.557  0.693 0.744 62

Table 3. (Team 5). Sensitivity Analysis: XMemSort max_age
(Validation Set, Combined).

Increasing max_age from 1 to 2 showed a slight im-
provement in HOTA and IDF1, and a reduction in IDSW.
Further increasing max_age to 3 yielded the best validation
performance. This suggests that allowing tracks to persist
for a slightly longer duration (2-3 frames) when unmatched
is beneficial for this dataset, likely by better handling brief
occlusions or misdetections without losing track identity.
The team’s final submitted model used max_age=2 as a
balance, though max_age=3 showed superior validation re-
sults.
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