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A. Derivation for the gradient with z
Recall the gradient descent formula for the quadratic form
of least squares:

∇f(θ) = Qθ + p (1)

We expand

∇f(θ) = Qθ + p (2)
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where,
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]
∈ Rd×Nd (7)

P′ = [−y1x1 − y2x2 . . . − yNxN] ∈ Rd×N (8)

Let θ′ = vec
(
zθT

)
, Eq. (6) becomes

∇f(θ, z) = Q′θ′ +P′z (9)

B. Construct NeuroRF synaptic matrices for
affine transformation

Problem definition Given a point correspondence
⟨x′

i,xi⟩, the affine transformation is defined by

x′ = HAx̃ (10)

where x′ = (x′, y′) and x̃ = [xT 1] = (x, y, 1) is x
in homogeneous coordinates. The 2 × 3 affine transforma-
tion matrix HA can be estimated with 3 point correspon-
dences [1, Chap 2], which constitute a 6-equation linear
system to solve 6 unknown parameters, i.e. d = 6

HA =

[
a11 a12 tx
a21 a22 ty

]
(11)

Given HA and Eq. (10), the residual at the point i can be
defined as the “transformation error”

ri (HA) = |x′
i −HAx̃i| (12)

RANSAC is applied to find HA that maximises the consen-
sus

Ψ(HA) =

N∑
i=1

I (|x′
i −HAx̃i| ≤ ϵ) , (13)

To apply our NeuroRF method for affine transformation,
we first vectorize the affinity matrix

θ = vec(HA) ∈ Rd (14)

where d = 6.
We next compute Q′ and P′ from X′ ∈ RN×2 and X̃ ∈

RN×3 to apply the gradient descent of the ModelHypothesis
(Eq. (9))
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= z⊗ θ ∈ RNd (16)
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Note that in Eq. (17), x′
i and y′i are broadcast over x̃i.
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Figure AA. The illustration for using multiple 1×1 convolution filters to simulate the Kronecker product with 3 Sampling neurons {zi}3i=1

and 2 GD neurons {θj}2j=1. The 1×1 convolutions are defined in Synapse, while the transpose(·) and flatten(·) are inherently supported
by Lava-Loihi framework. The element-wise multiplication is computed in Auxiliary neuron.

C. Runtime results for NeuroRF-CPU vs RS-
CPU

Fig. BB reported the average runtime between NeuroRF-
CPU and RS-CPU of Sec 5.2. in the Main paper. The run-
time of NeuroRF-CPU was from a CPU simulation of our
NeuroRF, hence not reflective of NeuroRF-Loihi.

D. Performance on neuromorphic hardware on
N = 10

We include additional results for the problem size of
N = 10, d = 2 for Sec. 5.3 in the Main paper.
Fig CCa demonstrates the equivalent solution quality be-
tween NeuroRF-Loihi and RS-CPU. Fig CCb shows that
NeuroRF-Loihi consumes approximately 13% dynamic en-
ergy compared to its competitor, which again confirms
the superiority of energy efficiency of our NeuroRF-
Loihi. Fig CCc indicates that the runtime of NeuroRF-
Loihi was higher than RS-CPU , which was probably be-
cause NeuroRF-Loihi solved least squares with GD, while
RS-CPU computed least squares with analytical solutions.
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(b) Effect of outlier ratio η (N = 200, d = 8)
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Figure BB. Averaged runtime across various levels of difficulty. Results were averaged over 10 trials for each method.
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Figure CC. Performance on neuromorphic hardware. (a) Average consensus size, (b) average dynamic energy consumption and (c) average
runtime of NeuroRF-Loihi and RS-CPU on synthetic line fitting instances with N = 10 points, plotted against outlier rate.
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