
Event-driven Robust Fitting on Neuromorphic Hardware

Tam Ngoc-Bang Nguyen1, Anh-Dzung Doan1, Zhipeng Cai2, Tat-Jun Chin1

1 Australian Institute for Machine Learning, The University of Adelaide,
2 Intel Labs

{tam.nb.nguyen,dzung.doan,tat-jun.chin}@adelaide.edu.au
czptc2h@gmail.com

A. Derivation for the gradient with z
Recall the gradient descent formula for the quadratic form
of least squares:

∇f(θ) = Qθ + p (1)

We expand

∇f(θ) = Qθ + p (2)

= Q′



z1 0
0 z1
z2 0
0 z2
...

...
zN 0
0 zN


θ +P′


z1
z2
...
zN

 (3)

= Q′vec



z1
z2
...
zN

θT

+P′


z1
z2
...
zN

 (4)

= Q′vec
(
zθT

)
+P′z (5)

= Q′(z⊗ θT ) +P′z (6)

where,

Q′ =
[
x1x

T
1 x2x

T
2 . . . xNxT

N

]
∈ Rd×Nd (7)

P′ = [−y1x1 − y2x2 . . . − yNxN] ∈ Rd×N (8)

Let θ′ = vec
(
zθT

)
, Eq. (6) becomes

∇f(θ, z) = Q′θ′ +P′z (9)

B. Construct NeuroRF synaptic matrices for
affine transformation

Problem definition Given a point correspondence
⟨x′

i,xi⟩, the affine transformation is defined by

x′ = HAx̃ (10)

where x′ = (x′, y′) and x̃ = [xT 1] = (x, y, 1) is x
in homogeneous coordinates. The 2 × 3 affine transforma-
tion matrix HA can be estimated with 3 point correspon-
dences [1, Chap 2], which constitute a 6-equation linear
system to solve 6 unknown parameters, i.e. d = 6

HA =

[
a11 a12 tx
a21 a22 ty

]
(11)

Given HA and Eq. (10), the residual at the point i can be
defined as the “transformation error”

ri (HA) = |x′
i −HAx̃i| (12)

RANSAC is applied to find HA that maximises the consen-
sus

Ψ(HA) =

N∑
i=1

I (|x′
i −HAx̃i| ≤ ϵ) , (13)

To apply our NeuroRF method for affine transformation,
we first vectorize the affinity matrix

θ = vec(HA) ∈ Rd (14)

where d = 6.
We next compute Q′ and P′ from X′ ∈ RN×2 and X̃ ∈

RN×3 to apply the gradient descent of the ModelHypothesis
(Eq. (9))

Q′ =

[
x̃1x̃

T
1 03×3 . . . x̃N x̃T

N 03×3

03×3 x̃1x̃
T
1 . . . 03×3 x̃N x̃T

N

]
∈ Rd×Nd

(15)

θ′ = vec
(
zθT

)
= z⊗ θ ∈ RNd (16)

P′ =

[
−x′

1x̃1 −x′
2x̃2 . . . −x′

N x̃N

−y′1x̃1 −y′2x̃2 . . . −y′N x̃N

]
∈ Rd×N (17)

Note that in Eq. (17), x′
i and y′i are broadcast over x̃i.

1



=

1

11

1
1 =

transpose

flatten

flatten

element-wise multiplication

OutSynapse Neuron
Dendrite

accumulator AxonIn

Figure AA. The illustration for using multiple 1×1 convolution filters to simulate the Kronecker product with 3 Sampling neurons {zi}3i=1

and 2 GD neurons {θj}2j=1. The 1×1 convolutions are defined in Synapse, while the transpose(·) and flatten(·) are inherently supported
by Lava-Loihi framework. The element-wise multiplication is computed in Auxiliary neuron.

C. Runtime results for NeuroRF-CPU vs RS-
CPU

Fig. BB reported the average runtime between NeuroRF-
CPU and RS-CPU of Sec 5.2. in the Main paper. The run-
time of NeuroRF-CPU was from a CPU simulation of our
NeuroRF, hence not reflective of NeuroRF-Loihi.

D. Performance on neuromorphic hardware on
N = 10

We include additional results for the problem size of
N = 10, d = 2 for Sec. 5.3 in the Main paper.
Fig CCa demonstrates the equivalent solution quality be-
tween NeuroRF-Loihi and RS-CPU. Fig CCb shows that
NeuroRF-Loihi consumes approximately 13% dynamic en-
ergy compared to its competitor, which again confirms
the superiority of energy efficiency of our NeuroRF-
Loihi. Fig CCc indicates that the runtime of NeuroRF-
Loihi was higher than RS-CPU , which was probably be-
cause NeuroRF-Loihi solved least squares with GD, while
RS-CPU computed least squares with analytical solutions.

References
[1] Richard Hartley and Andrew Zisserman. Multiple view geom-

etry in computer vision. Cambridge university press, 2003.
1



2 3 6 8
model dimension

10 1

100

101

102

av
er

ag
ed

 ru
nt

im
e 

(s
) [

lo
g 

sc
al

e]

RS-CPU
NeuroRS-CPU

(a) Vary d with (N = 200, η = 0.2)

0.1 0.2 0.3 0.4 0.5 0.6
outlier ratio

10 2

10 1

100

101

102

103

av
er

ag
ed

 ru
nt

im
e 

(s
) [

lo
g 

sc
al

e]

RS-CPU
NeuroRS-CPU

(b) Effect of outlier ratio η (N = 200, d = 8)

100 200 300 400 500
Data size

10 2

10 1

100

101

102

av
er

ag
ed

 ru
nt

im
e 

(s
) [

lo
g 

sc
al

e]

RS-CPU
NeuroRS-CPU

(c) Vary N with (η = 0.2, d = 8)

Figure BB. Averaged runtime across various levels of difficulty. Results were averaged over 10 trials for each method.

0.1 0.2 0.3 0.4 0.5
Outlier Ratio

0

20

40

60

80

100

no
rm

al
ize

d 
di

st
an

ce
 (%

)

CPU
Loihi

(a)

0.1 0.2 0.3 0.4 0.5
Outlier Ratio

0

20

40

60

80

100

Av
er

ag
ed

 e
ne

rg
y 

(m
J) 8.0x

11.8x

11.1x 10.1x 11.0x

CPU
Loihi

(b)

0.1 0.2 0.3 0.4 0.5
Outlier Ratio

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
ed

 ru
nt

im
e 

(s
)

15.2x 15.0x 15.4x 15.1x 15.2x

CPU
Loihi

(c)

Figure CC. Performance on neuromorphic hardware. (a) Average consensus size, (b) average dynamic energy consumption and (c) average
runtime of NeuroRF-Loihi and RS-CPU on synthetic line fitting instances with N = 10 points, plotted against outlier rate.


	Derivation for the gradient with z
	Construct NeuroRF synaptic matrices for affine transformation 
	Runtime results for NeuroRF-CPU vs RS-CPU
	Performance on neuromorphic hardware on N = 10

