Event-driven Robust Fitting on Neuromorphic Hardware
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A. Derivation for the gradient with z

Recall the gradient descent formula for the quadratic form
of least squares:
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We expand
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where,

Q = [xle ngg XNXJI\}] € R4xNd @)

P =[-yix1 —ysx2 —ynxn] € RPN (8)
Let 8" = vec (z8T), Eq. (6) becomes
Vf(0,z) =Q'0 +P'z 9)

B. Construct NeuroRF synaptic matrices for
affine transformation

Problem definition Given a point correspondence
(x},x;), the affine transformation is defined by

x' = HaX (10)

where X’ = (2/,y/) and X = [xT 1] = (2,9,1) is x
in homogeneous coordinates. The 2 x 3 affine transforma-
tion matrix Ha can be estimated with 3 point correspon-
dences [1, Chap 2], which constitute a 6-equation linear
system to solve 6 unknown parameters, i.e. d = 6
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Given Hy and Eq. (10), the residual at the point ¢ can be
defined as the “transformation error”

i (Ha) = [x] — HaX;]| (12)

RANSAC is applied to find H, that maximises the consen-

sus
N

U(Ha) = D T(jx; — HaX| < ¢), (13)
=1

To apply our NeuroRF method for affine transformation,
we first vectorize the affinity matrix

0 = vec(H,) € R? (14)

where d = 6. _
We next compute Q' and P’ from X’ € RV*2 and X €
RV 3 to apply the gradient descent of the ModelHypothesis

(Eq. (9)
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0’ = vec (z07) =z ® 6 € RV (16)
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Note that in Eq. (17), =, and y/ are broadcast over X;.
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Figure AA. The illustration for using multiple 1 x 1 convolution filters to simulate the Kronecker product with 3 Sampling neurons {z; }5_,
and 2 GD neurons {6, }?:1. The 1 x 1 convolutions are defined in Synapse, while the transpose(+) and flatten(-) are inherently supported
by Lava-Loihi framework. The element-wise multiplication is computed in Auxiliary neuron.

C. Runtime results for NeuroRF-CPU vs RS-
CPU

Fig. BB reported the average runtime between NeuroRF-
CPU and RS-CPU of Sec 5.2. in the Main paper. The run-
time of NeuroRF-CPU was from a CPU simulation of our
NeuroRF, hence not reflective of NeuroRF-Loihi.

D. Performance on neuromorphic hardware on

N=10
We include additional results for the problem size of
N = 10,d = 2 for Sec. 53 in the Main paper.

Fig CCa demonstrates the equivalent solution quality be-
tween NeuroRF-Loihi and RS-CPU. Fig CCb shows that
NeuroRF-Loihi consumes approximately 13% dynamic en-
ergy compared to its competitor, which again confirms
the superiority of energy efficiency of our NeuroRF-
Loihi. Fig CCc indicates that the runtime of NeuroRF-
Loihi was higher than RS-CPU , which was probably be-
cause NeuroRF-Loihi solved least squares with GD, while
RS-CPU computed least squares with analytical solutions.
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Figure BB. Averaged runtime across various levels of difficulty. Results were averaged over 10 trials for each method.
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Figure CC. Performance on neuromorphic hardware. (a) Average consensus size, (b) average dynamic energy consumption and (c) average
runtime of NeuroRF-Loihi and RS-CPU on synthetic line fitting instances with N = 10 points, plotted against outlier rate.
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