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Supplementary Material

1. Code
Our code for learned RGC events will be open sourced on
GitHub, along with how to integrate our differentiable event
simulator.

2. Additional Experimental Details
2.1. Closed Form Binning, with refractory period
In the main paper, we show the closed form equations to
extract binned events from high speed video. Here, we ex-
tend them to account for the refractory period, r, the “off”
period of a pixel after it has fired an event, and pr, the time
since the last event timestamp, temem, during event genera-
tion from the previous frame.

pr = tk − temem (1)
αr = (r//α+ 1) · α (2)

βr = β + max(0, ((r − pr)//α) · α)
= max(0, ((r − pr)//α) · α)

(3)

The weight and number of events become

wr
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and the closed form bin− and bin+ are
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Now with these closed form equations and straight-
through gradient estimation, we can model the gradients
to enable learning even with non-zero refractory periods.
In our experiments, the refractory period was set to 1 mil-
lisecond, following V2E2V [2]. We also model noise non-
idealities with Gaussian noise with sigma 0.03, following
the V2E emulator [1]. Ultimately, our closed form solution
with gradients produces event bins that match closely with
current state-of-the-art non-differentiable video to binned
event pipelines.

2.2. Dataset Considerations and Details

For video interpolation, we utilize the GoPRO dataset [3].
High speed video frames are captured at 240 fps. There
are 22 scenes in the train set and 11 scenes in the test set.
To train, each sample is a 9-frame sequential subset of a
scene. The two end-point frames are used as input to the
base model, REFID, while the rest are used to simulate the
events. The seven frames in-between the end-points are also
used as the ground truth frames for comparison and metric
calculation.

For optical flow, we utilize the TartanAir Dataset: Air-
Sim Simulation Dataset for Simultaneous Localization and
Mapping [5]. In our experiments, we test our methods with
the ‘Hard’ subset of the TartanAir Dataset. There are 18
environments total. We randomly set ‘office2’ and ‘west-
erndesert’ scenes as validation, and ‘gascola’ and ‘japane-
sealley’ as the test scenes prior to any experiments. As
mentioned in the main paper, in order to simulate events,
we first interpolate 15 frames between each original neigh-
boring frames. Similar to previous work [7], we generate
the dataset of high speed video using EMA-VFI to inter-
polate for training. Our resulting training dataset consists
of random crops from the original dataset along with the
interpolated frames, creating a dataset of 44,776 training,
5,000 validation, and 5,000 test sequences. All experiments
shown in this work are trained and evaluated on this created
dataset. TartanAir has ground truth masks for optical flow
which mask out pixels that have become occluded or dis-
occluded. Following the convention of previous work, we
train and evaluate on the masked optical flow.

2.3. Model Details

2.3.1. Event-based Video Interpolation

We utilize REFID [4], a state-of-the-art model for event-
based video interpolation. It uses an event-guided adaptive
channel attention and bidirectional event recurrent blocks.
The model we use is the default from the repo with num-
encoders=3, 32 base channels, num-block=1, and 2 residual
blocks. With one type of RGC kernel, the default number
of event channels is 2. As we experiment with different
number of types of RGC kernels, we scale just the input
layer accordingly. In all experiments, models are trained for
200k iterations using the PyTorch AdamW optimizer with a
learning rate of 2e−4 for the interpolation model, 5e−5 for
the RGC kernels, and weight decay 1e−4. For more details,
see the code.



2.3.2. Event-based Optical Flow
We use IDNet [6], the light-weight state-of-the-art model
for event-based optical flow. The backbone is the recurrent
neural network ConvGRU that processes the event bins se-
quentially. Specifically, we use IDNet’s id-8x variation. In
all experiments, we train for 400k iterations with the Py-
Torch Adam optimizer with a learning rate of 1e−4.

2.4. Additional Interpolation Results
We include an extended comparison for bandwidth vs per-
formance in fig. 2. For a no-events baseline, we train the
same model with zero events. The average PSNR over the
test set is 28.91dB and the SSIM is 0.912. In addition to the
CSDVS and CSDVS-Delbrück shown in the main paper, we
explore CSDVS-lin, CSDVS in the linear intensity domain.
In neuroscience, another common way to model the center-
surround is with a Difference of two Gaussian kernels of
different sizes. Here, we model the Difference of Gaus-
sians, learning the standard deviation of the two Gaussians
as we tune the bandwidth via the weighting on the sparsity
loss. Fig. 2 shows the full PSNR vs. Bandwidth trade-offs.
We use a logarithmic fit for all event types. While CSDVS
performs similarly to the DVS, CSDVS in the linear do-
main performs better. The Difference of Gaussians is also
an improvement over the DVS kernel. While it may ap-
proximately model human RGCs well, for machine vision
tasks, the best is still the learned RGC-lin and the spatially-
varying RGC-lin-sv.

2.4.1. The effect of increasing the receptive field
We experiment with different kernel sizes k = 3, 5, 7, 9, 11
for the video interpolation task. All of these models are
trained with the same settings, except for kernel size. All
models converged at roughly 20, 000 events per bin with a
PSNR in the range 34.36dB to 34.52dB and SSIM of 0.97
across the board. Although the interpolation performance
does not increase significantly as we increase the receptive
field, interestingly a faint structure is revealed. Immediately
outside of the center pixel, we have a negative weighting,
and just further out, a positively weighted ring, before de-
creasing once more.

2.4.2. The effect of increasing bandwidth
As we tune the bandwidth by weighting the sparsity loss
more or less, the learned kernel also changes. In fig. 4, we
show the learned RGC kernel for models trained at differ-
ent bandwidths. The performance increases from 31.01dB
with 436 events per bin to 34.45dB with 19, 557 events, to
36.52dB with 121, 343 events.

2.5. Multi-channel RGCs for Video Interpolation
2.5.1. Additional Multi-channel Results
In the main paper, we compared learning 1, 2, and 4 differ-
ent, yet complementary, kinds of RGCs. In fig. 5, we show

the learned kernels and the generated events. All models
produced roughly 150, 000 events per bin. Here, we also
show qualitative results for learning 16 kernels. Fig. 6 pro-
vides a view of the 16 learned kernels and the single learned
kernel comparison at the ultra-low-bandwidth regime of
roughly 10, 000 events. Mentioned in the main paper, at the
same bandwidth, RGC16 achieves 35.16dB while RGC1

achieve 33.76dB. We show two scenes and the events gen-
erated by each kernel. While the kernel learned for single
RGC is quite symmetric, we can see the 16 kernels model
can learn more specific features. We show samples of the
reconstruction by the models with different number of chan-
nels in fig. 7 and fig. 8 with PSNR and SSIM metrics
and some with zoom-in details. With more learned kernels,
there is less warping and color discrepancies.

2.5.2. Trade-off of Performance and Bandwidth
Fig. 9 shows how using multiple kinds of events can further
improve the performance at any given bandwidth. The i in
RGCi refers to how many parallel circuits are learned per
pixel. This is similar to how our eyes operate. For a given
receptive field, there can be multiple kinds of RGCs looking
at the signals. In fig. 9, we also show DVS for reference
as well as the RGC-lin-sv model, which is spatially vary-
ing kernels. RGC4 and RGC-lin-sv are similar in that they
both have 4 learned kernels. However, the spatially vary-
ing model is 1 kernel per pixel, as opposed to 4 per pixel.
We can see that the performance for video interpolation is
similar.

2.5.3. Additional considerations for Multi-event Band-
width

Typically, the event packet that the traditional DVS outputs
includes the pixel location and a bit denoting the polarity.
In the multi-event case, we can send the location and a few
bits. As we see in the generated events by each kernel in the
main paper, one or two types of RGC seem to dominate or
produce the most events, while the others complement with
additional information. There can be an improvement in
bandwidth if the system can support variable length pack-
ets. We can take advantage of Huffman encoding where
fixed binary codes can be assigned to different RGC types
based on their expected frequency. In this way, it can send
the minimum number of bits and only send additional bits
for rarer events when needed. Alternatively, when learn-
ing only a few RGC kernels, using spatially-varying kernels
as demonstrated with RGC-lin-sv could potentially enable
most of the performance benefits without requiring addi-
tional bits to be read out.

2.6. Additional Optical Flow Samples
We provide more qualitative results for optical flow in fig.
10. Again, we compared the DVS model with the best
performance, DVS 0.1T, against our learned, single kernel
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Figure 1. Additional Video Interpolation Qualitative Results. We compare reconstructions from DVS, CSDVS, and RGC-lin events.
PSNR and SSIM metrics are included as well.
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Figure 2. Extended Comparisons for Video Interpolation.
Along with the comparisons in the main paper, we include the
CSDVS- in the linear intensity and the difference of Gaussians.
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Figure 3. Learned Kernels at Increasing Kernel Sizes. As our
eye’s RGCs have varying receptive field sizes, we test the effect of
increasing the kernel for the task of interpolation, given a set band-
width of ≈ 20, 000 events per bin. As the kernel size increases, a
subtle structure emerges where around the center pixel, it is neg-
ative, and then just further out is a ring of positive again before
decreasing once more.
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Figure 4. Learned Kernels at Increasing Bandwidth. We opti-
mize performance while tuning the bandwidth jointly by varying
the weighting of the sparsity loss during training. Here we show
the learned 5× 5 kernels for different bandwidths (bw).
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Figure 5. Comparison between Learned Single and Multi-
event. We compare the learned kernels of a single RGC model,
two RGC, and four RGC for interpolation and show the gener-
ated events for each. Each column is a different scene. At the
same bandwidth, the 2-kernel model had a 0.40dB improvement
over the single kernel, and the 4-kernel model had an additional
0.35dB over the 2-kernel model.

model. Even with half the average number of events, we
achieve better optical flow.
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Figure 6. Multi-channel Comparison. Above are the learned kernels for K1 and K16 along with the events generated by the kernels for
two scenes.
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𝑅𝐺𝐶1 𝑅𝐺𝐶16 Ground Truth

PSNR: 30.1 dB    SSIM: 0.912 PSNR: 33.5 dB    SSIM: 0.945
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PSNR: 29.0 dB    SSIM: 0.923 PSNR: 32.0 dB    SSIM: 0.943

PSNR: 39.1 dB    SSIM: 0.988 PSNR: 40.2 dB    SSIM: 0.989

Figure 8. Interpolation Reconstructions from RGC1 and RGC16. We show the middle reconstructed frame for the one learned kernel
and 16 learned kernel models trained at the ultra-low bandwidth of roughly 10, 000 events.
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Figure 9. Multi-channel RGCs for Video Interpolation. We ex-
plore the idea of having mulitple learned retinal circuits per pixel,
similar to the the human retina. K1 is a single kind of event, K2
is two kinds of events, and so on. In the main paper, we also had
the option to learn spatially-varying kernels. This means there are
4 unique kernels, but each pixel only gets one circuit. We show
this setting, RGC-lin-sv (4) as a comparison. K4 and RGC-lin-sv
perform similarly. We also show DVS for reference.
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Figure 10. Additional Optical Flow Qualitative Results. We
show EPE↓, 1PE↓, and 3PE↓ metrics for four additional scenes.
With our learned RGC kernel, we achieve both sparser readout
and better optical flow performance.
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