
Supplementary Material
In this supplementary material, we provide more details on
our approach, experiment settings and further experimental
results. We encourage readers to take a look at our open-
sourced implementation upon publication for more detailed
configuration. All experiments are performed on a desktop
computer with an AMD Ryzen Threadripper PRO 5955WX
CPU and NVIDIA RTX4090 GPU.

1. Camera Projection
We use a pinhole camera model in all of our experiments
due to the simplicity, but in theory we can also use more
elaborate models e.g. with distortion.

Π(X) =
[
fx

X
Z + cx, fy

Y
Z + cy

]
(8)

Π−1 (x, Z) =
[
Z u−cx

fx
, Z

v−cy
fy

, Z, 1
]T

(9)

2. Inference settings and hyperparameters
We run our system at resolution 320 × 432 on TUM-
RGBD [44] and 360× 640 on Replica [43].

2.1. Tracking
Tracking is configured by the frontend and backend parame-
ters for graph building, optimization and our loop detector.
Since the configuration system is quite complex, we will
only brush across the critical parameter settings. We will
release full configurations upon publication.

Frontend. We use a motion threshold of 3.0 for adding
new keyframes. During scale optimization we use the objec-
tive

E = E + αEreg (10)

with α = 0.001. We found it important to keep keyframes
longer in the frontend bundle adjustment window. This can
be controlled with the max age variable in [47]. We increase
this value from 25 to 30. We use a weight β = 0.5 on TUM-
RGBD [44] and β = 0.7 on Replica [43] for measuring
frame distance, see [47].

Backend. We run the backend every 8 frontend passes in
our experiments. We build our global graph more conserva-
tively by using a window of max. 150 frames, using up to
1500 edges on indoor scenes. A fully detailed configuration
can be found on our open-sourced implementation for all
experiments (and more).

Loop Detector. We compute visual features by using the
EigenPlaces [1] ResNet50 network. We found qualitatively,
that a feature threshold τf = 0.5 works well in practice.
We make the assumption that loop candidates are at least

τt = 10 frames apart. For our orientation threshold, we set
τr = 15◦. This assumes that during a loop closure we have
a very similar orientation, but due to drift a very distinct
translation.

2.2. Rendering

We run our mapper every 20 frontend calls and optimize for
100 iterations at a small delay of 5 frames. We found that in
practice, this can be arbitrarily tuned, i.e. we could also run
more frequent with less training iterations. We anneal a 3D
positional learning rate between [1e− 4, 1e− 6] during our
optimization, the other parameters are similar to [29]. During
each iteration, we optimize newly added frames and add the
10 last frames and 20 random past frames similar to [29].
Since we run a test-time optimization, we are also prone
to catastrophic forgetting. Using enough random frames
ensures that this does not happen. Our system is not yet
designed to handle large-scale scenes or unbounded scenes,
where smarter strategies may be needed.

After filtering the tracking map with a covisibility check
[47], we downsample the point cloud with factor 64 on
Replica [43] and 16 on TUM-RGBD [44]. We use the same
thresholds for densification across datasets. We made the ex-
perience that balancing these parameters can result in similar
results as long as the total number of Gaussians is simi-
lar. We weight L1-error and SSIM [51] in our appearance
loss with λ2 = 0.2. We balance depth and appearance su-
pervision with λ1 = 0.9 on TUM-RGBD [44] and 0.8 on
Replica [43]. Balancing these two terms, can shift metrics
slightly in favor of either appearance or geometry. Similar
to [29] we encourage isotropic Gaussians with their scale
regularization term. Our officially reported metrics are for
dense depth supervision when a prior exists. For monocular
video, we use the filtered tracking map as depth guidance.

Monte Carlo Markov Chain Gaussian Splatting.
MCMC Gaussian Splatting [22] has additional hyperparam-
eters for the noise level and the max. number of Gaussians
in a scene. This poses an upper limit beyond which cannot
be densified. We use lrnoise = 1e4 and use a slightly lower
number of Gaussians from the runs with vanilla 3D Gaussian
Splatting [21].

2D Gaussian Splatting 2D Gaussian Splatting has a
slightly different objective function [15]. On top of the de-
fault rendering objective, we also have a normal consistency
Lnormal and depth distortion loss Ldist. We also found, that
this representation has a different learning dynamic than 3D
Gaussians. We therefore tuned the weighting to the best of
our ability (without extensive parameter sweeps).

2.3. Feedback

In our feedback experiment, we perform backpropagation
on the local pose graph of our rendering batch as is done
in [29]. We used vanilla 3D Gaussian Splatting with the
adaptive density control densification strategy [21]. As a
sanity check, we only feedback the poses and/or disparity
of rendered frames that have a decently similar disparity to
the tracking map. The reason for this lies in the fact that
our renderer has a small delay behind the leading tracker.
If the rendering map is yet not covering enough pixels for
some reason, we could potentially feedback a much sparser
frame than we initially used during tracking. This could
potentially disturb the update network [47]. We therefore
check that the abs. rel. error between rendered disparity and
tracking disparity is ≤ 0.2. If at least 50% of pixels satisfy
this condition, then the frame is considered good.

3. Runtime and Memory Complexity

In this section, we provide more insights into the runtime and
memory complexity of our system. Figure 4 already provides
a detailed trade-off between rendering quality and inference
speed on both Replica [43] and TUM-RGBD [44]. While
these numbers will roughly transfer to other datasets (e.g.
KITTI [12] or ScanNet [4]), they still depend on the input
resolution, the amount of camera motion in the video and
the bundle adjustment window size. Our monocular scale
optimization has not yet been implemented as a compiled
CUDA kernel, which usually subtracts roughly 2fps from
the run-time compared to other modes.

The memory consumption is similar to [38]. We were
able to reduce the memory footprint considerably compared
to [47] by buffering images exclusively in int8 precision. Our
framework can scale to long-term video and outdoor scenes
like KITTI [12] with thousands of frames while still being in
the limits of consumer GPU’s. Memory complexity is a func-
tion that is hard to measure exactly by benchmarking specific
scenes. We have the following memory complexities:
• Storing the update network [47] and loop detector [1] in

float precision - O (1).
• Inference cost of running the networks at fixed precision

and image resolution - O (HW)
• A memory buffer growing with the number N of

keyframes - O (N) . The amount of motion in a scene will
influence N compared to the length of the video stream.

• The Bundle Adjustment optimization scales quadratically
w.r.t the number of camera poses in our optimization win-
dow - O

(
W 2

)
. This can be restrictive when scenes have

thousands of keyframes, i.e. we have a limit on how large
our backend window can be and the number of factors we
add to the graph. On indoor scenes, we usually perform a
global optimization.

• Gaussian Splatting: Linear scaling w.r.t the number M of

Gaussian primitives - O (M). We have to not only store
the model parameters, but also gradients and optimizer
states during optimization.

Components Memory [MB]
Update network [47] 494
+ Video Buffer (empty) 1754
+ Frontend 8405
+ Backend 10239
+ Loop Detection [1] 10587
+ Mapping 13628

Table 8. Memory Breakdown on Replica [43] in RGBD mode. In
this example, we use 135 000 Gaussian primitives, 360×640 input
resolution and a buffer size of 128 keyframes. Note how storing the
external sensor depths increases memory consumption compared
to purely monocular.

Table 8 demonstrates a breakdown of the memory on
Replica/room0.

More memory could be saved by low-precision inference
and quantization of the neural networks and lowering the
precision of the scene representation while sacrificing perfor-
mance. However, we want to highlight that with advances in
consumer graphics hardware (NVIDIA RTX 6000 Blackwell
has 96GB RAM), the current generation allows us to render
highly photorealistic large-scale scenes without introducing
any new tricks. We encourage users to simply try out our
framework.

4. Extended Evaluation

In this section, we want to provide more insights into how our
system performs quantitatively and show more qualitative
results. The reported rendering metrics for our comparison
with related work are computed on the keyframe images
based on the estimated poses, as is standard. However, this
can give a warped view on the quality of a method. We want
to highlight several key points:
• Every method has a different keyframe management or

builds their graph based on different thresholds.
• Not all metrics are reportedly available on all datasets.

We omitted an extensive evaluation of related work due
to time constraints. Example: L1 metric is only readily
available for Replica [43], however due to being a virtual
dataset this metric is already quite saturated. The TUM-
RGBD [44] benchmark is much more interesting.

• Performance should be measured both on training and
other frames! Generalization of our test-time optimization
is what normally counts, which is why we report results
on non-training frames.

• The difference between modes only becomes apparent
when considering both geometry and predicted images
for both training and other frames.

Technique #Gaussians PSNR↑ LPIPS↓ L1↓ PSNR↑ LPIPS↓ L1↓
KF Non-KF

TUM-RGBD
Monocular 118 889 26.84 0.129 16.67 24.62 0.156 17.37
P-RGBD 119 100 26.53 0.131 8.50 24.81 0.155 8.38
RGBD 123 232 26.81 0.110 4.26 24.89 0.144 4.63

Replica
Monocular 246 637 39.47 0.031 3.33 38.42 0.032 3.47
P-RGBD 248 175 38.33 0.032 3.72 38.34 0.033 3.83
RGBD 235 825 39.66 0.028 0.55 38.87 0.029 0.61

Table 9. Full Rendering results. We report our overall best results with MCMC densification [22] averaged over 5 runs on TUM-RGBD [44]
and Replica [43] with refinement.

Supervision #Gaussians PSNR↑ LPIPS↓ L1↓ PSNR↑ LPIPS↓ L1↓
KF Non-KF

TUM-RGBD
dense 88 280 25.98 0.140 8.2 24.48 0.161 8.2
sparse 100 156 24.37 0.129 15.6 24.37 0.155 16.7

Replica
dense 264 343 38.79 0.0361 3.55 37.84 0.0371 3.64
sparse 275 997 38.95 0.0347 2.96 37.82 0.0361 3.11

Table 10. Sparse vs. dense supervision of vanilla 3D Gaussian Splatting [21] with monocular prior. Geometry reconstruction depends
heavily on the degree and quality of supervision. TUM-RGBD [44] does not have enough redundancy in frames for the filtered map to cover
the scene. Replica [43] on the other hand will produce enough reliable covisible 3D points, such that the filtered tracking map provides
strong supervision for each Gaussian. For this reason, we can achieve better results when using the sparser, filtered map on Replica. This
closes the gap to related work [38]. We believe that with different priors and hyperparameters, we would achieve the same L1 error.

We show our full evaluation metrics of the overall best
results in Table 9. We can only see a clean progression
from monocular to RGBD inputs on the challenging TUM-
RGBD [44] benchmark. We want to highlight, that strict
monocular methods can overfit the appearance of training
frames very well independent of tracking accuracy or ge-
ometric accuracy. However, we can generalize better and
achieve much more accurate geometry when using additional
depth priors. The benefit of a monocular prior [57] seems
to be much smaller on Replica [43]. We found out in Table
10, that depending on the depth supervision signal this result
changes. We also suspect [38] to supervise with a filtered
depth map for this reason. Figure 5 and 6 show qualitative
examples on top to get a feeling for how good methods work.
We specifically chose non-training frames, which might put
us at a disadvantage. We can observe clear improvements on
fine-structured details, such as the lamp or background.

Due to our dense map both in tracking and rendering we
can achieve better reconstructions than related work. For
monocular reconstructions, we specifically show our results
with a depth prior [57], which achieves much more accurate
geometric reconstruction and better photo-realism on non-
training frames than the monocular counter-part. This holds

true even for slightly worse L1 metrics on Replica, as can
be seen in the qualitative images. Results on Replica are
already so accurate, that slight scale differences across time
can create slightly non-flat walls.

GlORIE-SLAM [62] MonoGS [29] DROID-Splat (Ours) Ground Truth
f
r
1

r
o
o
m

f
r
2

x
y
z

f
r
1

r
o
o
m

f
r
2

x
y
z

Photo-SLAM [16] MonoGS [29] DROID-Splat (Ours) Ground Truth

Figure 5. More Rendering Results on TUM-RGBD [44]. Top four rows are from monocular input, bottom from RGBD.

Mono P-RGBD RGBD Ground Truth
o
f
f
i
c
e

2
r
o
o
m

0
r
o
o
m

1
r
o
o
m

2

Figure 6. Rendering Results on Replica [43]. We show non-training frames in multiple input modalities. Note how visually close the
predictions are to the groundtruth.

Technique # Gaussians PSNR↑ LPIPS↓ L1↓ PSNR↑ LPIPS↓ L1↓
KF Non-KF

no refinement
2DGS [15] 173 309 20.71 0.31 10.2 19.84 0.33 10.3
3DGS [21] 111 878 23.26 0.23 9.1 22.46 0.25 9.2
+ MCMC [22] 113 060 23.78 0.21 8.2 22.81 0.23 8.4

with refinement
2DGS [15] 131 576 22.87 0.21 8.8 21.73 0.23 8.7
3DGS [21] 88 280 25.98 0.14 8.2 24.47 0.16 8.2
+ MCMC [22] 119 100 26.53 0.13 8.5 24.81 0.15 8.4

Table 11. Ablation Rendering Techniques. We report results averaged over 5 runs on TUM-RGBD [44] in P-RGBD mode using [57] as a
prior. We show a small progression with and without refinement. While 2D Gaussian Splatting [15] quickly produces smooth surfaces, this
is not rewarded in the L1 error metric.

Table 11 shows a detailed ablation of Rendering tech-
niques. We did not combine 2D Gaussian Splatting with
the improved densification strategy [22], however we expect
this to gain a similar improvement. We did not succeed in
achieving better reconstructions for 2D Gaussian Splatting
on TUM-RGBD [44]. However, we observe a clear benefit
of this representation similar to the results in the respective

paper, see examples in Figure 7. We can quickly converge to
flat surfaces, which helps to avoid many floaters in outdoor-
scenarios. On the used indoor datasets, vanilla 3D Gaussians
perform better.

3D Gaussian Splatting2D Gaussian Splatting Reference

17.53 dB 20.56 dB

24.06 dB

22.29 dB21.64 dB

20.24 dB
Figure 7. Geometry vs. appearance. We found, that 2D Gaussian Splatting [15] can quickly create smooth surfaces and does not accumulate
many floaters in outdoor scenes. However, the rendering quality lacks behind 3D Gaussian Splatting [21] and as long as good supervision
exists we can achieve better L1 metrics with 3D Gaussian Splatting.

5. Monocular Depth Prediction

Monocular depth prediction is a longstanding task with very
impressive in-the-wild results of recent SotA models [2, 14,
55, 57]. We show some qualitative comparisons between
selected models in Figure 8. Due to training on massive
datasets, current single-image depth predictions can recover
fine-structured details. Nonetheless, the accuracy of rel.
depth on a single frame is not the only thing that matters for
SLAM. We want to highlight:

• The rel. depth error on a single image should be minimal.
This is obvious, however most recent models are only

evaluated on specific benchmarks such as e.g. KITTI [12]
or NYU [41]. Even though model predictions can look
qualitatively very different, their abs. rel. error does not
seem to be that different on untypical depth prediction
benchmarks.

• Temporal consistency matters a lot. Even though we op-
timize scale si and shift oi parameters to match our per-
ceived optical flow, models result in differently consistent
integrated maps. It is still very beneficial to have high
temporal scale consistency in a depth model.

Recent diffusion models [14, 18] can leverage billion-

Lotus [14] DepthAnything [55] Metric3D [57] Reference

Figure 8. Monocular depth prediction in-the-wild. Models exhibit very clear differences w.r.t captured details and scale consistency on
self-captured video. Problems can arise in particular for reflective surfaces or paintings.

Prior ATE RMSE↓ PSNR↑ LPIPS↓ L1↓ ATE RMSE↓ PSNR↑ LPIPS↓ L1↓
KF Non-KF

TUM-RGBD
Metric3D [57] 1.93 23.27 0.226 0.091 1.83 22.48 0.242 0.089
ZoeDepth [2] 1.97 23.21 0.233 0.132 1.87 22.34 0.249 0.136
DepthAnything [55] 1.91 23.24 0.229 0.098 1.79 22.43 0.246 0.099
Lotus [14] 2.45 22.84 0.256 0.297 2.39 21.84 0.273 0.313

Replica
Metric3D [57] 0.269 32.92 0.134 0.037 0.268 32.62 0.134 0.038
ZoeDepth [2] 0.266 33.24 0.123 0.088 0.265 32.89 0.123 0.091
DepthAnything [55] 0.268 33.06 0.131 0.063 0.268 32.73 0.131 0.066
Lotus [14] 0.275 32.23 0.116 0.295 0.278 31.72 0.118 0.318

Table 12. Ablation Prior Depth on Replica [43] and TUM-RGBD [44]. Recent SotA depth prediction networks [2, 14, 55, 57] have
different qualities for SLAM. Good temporal consistency allows accurate geometry reconstruction. However, rendering quality and tracking
does not necessarily correlate with it. Results are after online mapping without any refinement using vanilla 3D Gaussian Splatting [21] and
averaged over 5 runs.

scale text-to-image pretraining to achieve strong depth pre-
diction results with little finetuning. As can be seen in Figure
8, the qualitative difference and recovered fine-structured
details compared to models trained only on million-scale
depth prediction datasets seems obvious. However, diffusion
models exhibit strong scale differences across a video. This
seems to create a lot of floaters, in part enhanced due to the
high-frequency details. We did not see an improvement for
SLAM by integrating these models for this reason. Table
12 shows the performance of our system with vanilla 3D
Gaussian Splatting [21]. We observe that Metric3D [57]
consistently optimizes the best geometry. However, other
metrics are not always consistent.

6. Loop Closure
Table 13 shows a comparison for long-term monocular track-
ing. Our SLAM system is competitive with the State-of-
the-Art. We want to highlight, how a scale optimization
of the monocular priors improves tracking significantly on
indoor scenes, but can increase drift on long outdoor scenes.
The trajectory from the DROID-SLAM network diverges on
scene 01 like ORB-SLAM v3. We believe this issue could
be fixed by using more autonomous driving data with mostly
forward translation in the training.

00 01 02 03 04 05 06 07 08 09 10 Avg

ORB-SLAM3 [3] 6.77 X 30.50 1.04 0.93 5.54 16.61 9.70 60.69 7.89 8.65 -
LDSO [11] 9.32 11.68 31.98 2.85 1.22 5.1 13.55 2.96 129.02 21.64 17.36 22.42
DROID-VO [47] 98.43 84.2 108.8 2.58 0.93 59.27 64.4 24.2 64.55 71.8 16.91 54.19
DPVO [48] 113.21 12.69 123.4 2.09 0.68 58.96 54.78 19.26 115.9 75.1 13.63 53.61
DROID-SLAM [47] 92.1 344.6 - 2.38 1.00 118.5 62.47 21.78 161.6 - 118.7 -
DPV-SLAM [25] 112.8 11.50 123.53 2.50 0.81 57.80 54.86 18.77 110.49 76.66 13.65 53.03
DPV-SLAM++ [25] 8.30 11.86 39.64 2.50 0.78 5.74 11.60 1.52 110.9 76.70 13.70 25.76
Ours mono 6.44 X (16.81) 35.06 5.45 0.73 26.89 (5.33) 15.21 3.01 64.72 9.31 17.21
Ours PRGBD 10.52 X 114.04 6.10 5.19 17.55 (5.27) 3.96 7.73 44.14 29.06 10.75 -
Ours PRGBD* 8.09 X 13.69 2.11 3.23 4.41 (3.76) 8.51 13.41 13.37 4.68 3.15 -

Table 13. Ablation Long-term Tracking. We compare monocular methods on KITTI [12], using ATE[m]. All our methods use the classic
loop closure with PGO. We noticed, that DROID-SLAM [47] cannot use the sparse lidar in RGBD-mode without densification. Related
work metrics are from [25]. In general, we notice that as long as the scene contains a loop closure, we can reduce drift reliably. Scenes 01,
03 and 04 are mostly forward-translation trajectories. We believe, that the DROID-SLAM network cannot handle these sequences as well as
[48]. We further noticed that these short sequences depend a lot on the internal pose interpolation (DPVO uses a damped linear interpolation,
while the naive DROID implementation simply uses the previous pose). Scene 05 is special, since it involves a loop correction across
multiple past segments. We can achieve much better results here without fixing the PGO for our prior optimization (results in brackets). On
some scenes the scale optimization can enhance the drift in the system, in contrast a fixed prior can reduce it significantly as long as it is
consistent enough over the video (PRGBD* uses a fixed prior).

7. How important is camera calibration really?
In this section we want to show some qualitative examples
of in-the-wild footage with unknown intrinsics. As stated in
the main paper, we perform a two-stage reconstruction:
1. Run the system without scale-optimization and optimize

the camera intrinsics θ.
2. Use the now calibrated camera to run in P-RGBD mode

and additionally optimize si and oi

Since we need an initial estimate of the intrinsics, we assume
a heuristic where for a pinhole camera

fx = fy = (H +W) /2

cx = W/2 cy = H/2 . (11)

The benefit of camera calibration was quantitatively shown
in [13]. We report qualitative results on self-recorded scenes
and show the robustness when initializing from a heuristic.
It can be seen in Figure 9, that both intrinsics calibration and
scale optimization are beneficial for in-the-wild reconstruc-
tion. With wrong intrinsics, we observe distorted odometry
and structure. With scale optimization, we can generate glob-
ally consistent maps. All together forms a good basis for
rendering.

8. Failure Cases
Due to the challenging unbounded outdoor setting on uncal-
ibrated cameras, we quickly observed common limitations
of our framework. We notice that even though monocular
depth prediction networks allow highly detailed single-frame
predictions, their usage on in-the-wild video is limited. Scale
inconsistencies and inaccurate predictions make us accumu-
late floaters over time. We therefore have to use the fol-
lowing: We limit depth supervision to consistent 3D points
using the covisibility check [47] and pixels with confidence
σi ≥ 0.1. This removes the sky and many floaters, but can
also underconstraint the scene.

wo calibration w calibration w scale

w calibrationwo calibration

wo calibration wo calibration

Figure 9. Camera calibration and prior integration matter. Distortion effects and artifacts both on the map and camera odometry can
be observed without calibration. Using our strategy, we can get rid of distortions. The scale-optimized prior integration allows accurate
structure reconstruction. Outdoor scenes require all together due to scale inconsistencies of common depth prediction models.

Figure 10. Results on hand-captured cellphone videos. In-the-
wild outdoor scenes pose different challenges than benchmarks.
Left: 3D Gaussian Splatting. Right: 2D Gaussian Splatting. While
2DGS is more resistant to floaters due to its surface optimization, it
struggles with rendering quality. Both methods cannot deal well
with strong lighting changes and reflections without extensions.

9. What did not work?
We tried the following things unsuccessfully:
• Multi-View Gaussian Splatting [7] backprojects crops of

2D appearance error into 3D by using the camera ray.
We can then perform an intersection test to carve out a
3D volume across multiple views. This test identified
new Gaussians, that cause a high 2D error, but were not
identified in the original densification strategy [21]. How-
ever, we did not manage to improve densification this way
within our framework.

• [45] uses a regularization term to battle catastrophic for-
getting. We did not succeed on improving our metrics
this way. We further tried to simply scale the gradients of
optimized Gaussians by the number of times its frame has
been already optimized by the renderer.

• Sparse GS [53] uses a softmax for rendering depths. We
can identify floaters on outdoor scenes by analyzing the
modality of the depth distribution. Since we compute an
integrated absolute depth and supervise with priors, we
were not able to converge quickly to the correct values
due to the used logarithm function. Since Sparse GS was
created with rel. depth supervision, we did not pursue this
further.

Bad Priors

Challenging
Illumination

Figure 11. Common failure cases. Since we are heavily dependent
on depth priors on in-the-wild video, our method can fail when
priors get unreliable. Similarly, if the geometry supervision is not
good enough, we accumulate floaters on outdoor scenes. Challeng-
ing lighting conditions can enhance this effect, since our model
will overfit the scene and create additional Gaussians for modeling
lighting effects (see Gaussians surrounding object).

	Introduction
	Related Work
	Our Approach
	End-to-end Tracking
	Loop Closure
	Differentiable Rendering

	Experiments
	Comparison with the State-of-the-Art

	Conclusion

	Camera Projection
	Inference settings and hyperparameters
	Tracking
	Rendering
	Feedback

	Runtime and Memory Complexity
	Extended Evaluation
	Monocular Depth Prediction

	Loop Closure
	How important is camera calibration really?

	Failure Cases
	What did not work?

