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Abstract

The ability to interpret and comprehend a 3D scene is es-
sential for many vision and robotics systems. In numerous
applications, this involves 3D object detection, i.e. identify-
ing the location and dimensions of objects belonging to a
specific category, typically represented as bounding boxes.
This has traditionally been solved by training to detect a
fixed set of categories, which limits its use. In this work,
we investigate open-vocabulary 3D object detection in the
challenging yet practical sparse-view setting, where only a
limited number of posed RGB images are available as input.
Our approach is training-free, relying on pre-trained, off-
the-shelf 2D foundation models instead of employing com-
putationally expensive 3D feature fusion or requiring 3D-
specific learning. By lifting 2D detections and directly op-
timizing 3D proposals for featuremetric consistency across
views, we fully leverage the extensive training data avail-
able in 2D compared to 3D. Through standard benchmarks,
we demonstrate that this simple pipeline establishes a pow-
erful baseline, performing competitively with state-of-the-
art techniques in densely sampled scenarios while signifi-
cantly outperforming them in the sparse-view setting.

1. Introduction

The ability to parse and understand a 3D scene is a prereq-
uisite for many vision or robotic systems. In many applica-
tions, this takes the form of 3D object detection, i.e. deter-
mining the location and dimension of all objects of a par-
ticular category, e.g. as a bounding box. Object detection is
a classical problem in computer vision, and is traditionally
solved by selecting a discrete set of object categories, which
the method is trained to detect. Having a fixed set of labels
limits the applicability of the methods and prevents them
from generalizing to new problem domains not represented
in the label-set without expensive re-training.

Recent advances in 2D visual-language models have
allowed for so-called open-vocabulary object detection,
where the system can be queried with arbitrary labels. The
expressive power coming from incorporating the language
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Figure 1. Open-vocabulary 3D Object Detection. Our method
takes as input a sparse collection of posed RGB images together
with a query text prompt. The outputs are 3D bounding boxes
corresponding to the prompt. In the figure we include the ground-
truth mesh for visualization purposes only.

model also allows for more complex queries, e.g. a lengthier
description of an object beyond single labels or even via ob-
ject affordances (Where can I sit?). While this development
originally happened in 2D, several methods have been pro-
posed for open-vocabulary 3D object detection using these
rich feature representations.

Existing methods either rely on dense 3D geometry ob-
tained by scanning and reconstructing the scene offline, or
perform monocular detection in RGB-D images. To detect
new or moved objects, the scene needs to be rescanned,
hence many applications requiring continuous monitoring
of a scene are not feasible in this setting. Most meth-
ods use trained 3D proposal networks to localize objects
in the 3D data. They leverage vision-language models ei-
ther when training the 3D backbone or at inference time
by back-projecting language-augmented visual features and
matching open-vocabulary 2D detections to class-agnostic
3D masks. However, current 3D datasets are orders of mag-
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Figure 2. Overview of SMOV3D. Our method takes as input a sparse collection of posed RGB images together with a collection of text
query prompts. The pipeline then conists of three steps. i) Monocular 2D Proposals For each prompt and image we perform 2D detection
yielding a set of masks. These are then lifted to 3D using monocular depth. ii) Multi-view Refinement Lifted 3D point clouds are refined
by optimizing a multi-view featuremetric loss that combines both photometric and CLIP consistency. iii) 3D Clustering and Fusion. The
optimized 3D point clouds are aggregated in 3D and greedily fused using a simple heuristic. The output is a collection of 3D bounding
boxes. For visualization we show them overlayed on the ground-truth mesh.

nitude smaller than the large-scale image datasets used to
train 2D foundation models. As a result, the strong gener-
alization capabilities of the 2D models may be lost during
training.

In this work, we investigate how effectively 2D foun-
dation models can be leveraged to tackle the task of open-
vocabulary 3D object detection from only a sparse set of
RGB images, without any 3D-specific training, and in-
troduce a straightforward, training-free baseline. Our ap-
proach works by lifting detections from off-the-shelf 2D
open-vocabulary and segmentation models into 3D via
monocular depth, followed by a multi-view refinement that
optimizes for photometric and semantic consistency. Our
experiments show that this simple approach is surprisingly
powerful, producing comparable results to state-of-the-art
methods in densely-sampled scenarios while establishing a
strong baseline for the sparse-view setting.

2. Related Work

3D object detection. 3D object detection aims at predicting
three-dimensional bounding boxes and object classes from
3D or 2D input data. 3D point clouds are appealing for
3D object detection as they provide accurate geometric in-
formation, and point cloud-based methods leveraging deep
Hough voting [5, 23, 35, 42] or Transformers [14, 21] have
shown remarkable performance in both indoor and outdoor
settings. However, these methods require depth sensors or
dense image sequences for data acquisition, which may not
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be practical due to cost or power consumption constraints.

Early methods for 3D object detection from RGB im-
ages extend conventional 2D detectors to lift monocular
detections to 3D [16, 24, 30, 31], but their performance
suffers from the lack of explicit depth information. Re-
cently, methods leveraging multiple views to better cap-
ture scene geometry have gained increasing attention. Ex-
tending DETR [3] to the 3D domain, Transformer-based
methods [13, 33, 37, 38] predict bounding boxes by attend-
ing to multi-view features. Feature volume-based methods
[29, 34] perform 3D object detection in a voxel-based 3D
feature volume [22], while recent work leverages Neural
Radiance Fields (NeRF) [19] to model geometry implicitly
in the feature volume [39].

Despite their proven performance, current state-of-the-
art 3D object detectors, whether 3D or 2D-based, are
closed-set methods trained to detect a limited number of
predefined object categories. Extending these models to
new domains requires collecting and annotating new data
and retraining the models, which is both costly and time-
consuming.

Open-vocabulary 2D and 3D object detection. Open-
vocabulary object detection is an emerging field in com-
puter vision that aims to localize and identify arbitrary, pre-
viously unseen objects. The ideas of going from closed to
open vocabulary tasks emerged with the advent of better
foundation models, for example GPT for text, [2], CLIP for
image-text [25], and Lidar-CLIP for image-text-lidar [10].



Such models have been shown to be important for a large
variety of few- or single-shot learning and open vocabulary
tasks. For example CLIP opened up for open-ended queries
primarily for classification and action recognition, but later
open-vocabulary 2D Object detection was explored and de-
veloped, e.g. in [4, 26, 43, 44].

Open-vocabulary 3D object detection is still in its in-
fancy. Existing open-vocabulary 3D detection models usu-
ally operate on point-cloud or RGB-D data. OV-3DETIC
[17] expands a 3D object detector’s vocabulary using Im-
ageNetlK [7] and uses contrastive learning to transfer
knowledge between image and point cloud modalities.
OV-3DET [18] generates pseudo-annotations using a pre-
trained 2D open-vocabulary detector [45] to train a 3D de-
tector to localize objects. Object2Scene [46] proposes a
point-cloud object detector (L3Det) trained on a 3D dataset
augmented by inserting 3D objects and corresponding text
descriptions. It leverages cross-domain contrastive learning
to mitigate the domain gap between scene and inserted ob-
jects. FM-OV3D [41] blends knowledge from multiple pre-
trained foundation models to improve the open-vocabulary
localization and recognition abilities of its 3D detection
model. Openlns3D [11] casts the problem as an exten-
sion of open-vocabulary semantic segmentation. Its ”Snap”
module generates synthetic images from point clouds and
uses 2D vision-language models to detect objects in 2D
based on text prompts, while its "Lookup” module matches
the 2D detections to class-agnosic 3D point clounds pre-
dicted by the "Mask” module. ImOV3D [40] addresses the
scarcity of annotated 3D datasets by generating pseudo 3D
point clouds and annotations from 2D datasets to train an
open-vocabulary point cloud detector.

The reliance on point cloud data, whether obtained by
depth sensors or dense image sequences, limits the appli-
cability of open-vocabulary 3D detection, and the need for
trained 3D proposal networks raises the question of the abil-
ity of existing methods to generalize to new domains. In
this work, we leverage pre-trained foundation models to in-
troduce a straightforward, training-free method for open-
vocabulary 3D object detection using only sparse, multi-
view RGB images as input.

3. Method

We now present our method for open-vocabulary 3D ob-
ject detection which we call Sparse Multi-view Open-
Vocabulary 3D Detection (SMOV3D). Our method takes
as input a collection of RGB images {Z;}/ , together with
poses and intrinsics {(R;, t;, K;)}, as well as query text
prompts. For each of the prompts, the method then consists
of three steps:
* For each image we generate a collection 2D proposals
which are lifted to a camera-centric point cloud using
monocular depth estimation. (Sec. 3.1)
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» Each proposal is then refined by considering a multi-view
featuremetric consistency. (Sec 3.2)

* The proposals are then robustly clustered in 3D and fused
to generate the final result. (Sec. 3.3)

The method returns a collection of 3D bounding boxes. For

each prompt, multiple bounding boxes can be returned if

there are multiple instances present in the scene. Figure 2

shows an overview of our method and in the next sections

we detail each of the three steps.

3.1. Single-view Proposal Generation

In a first step, we generate initial 3D object proposals for
each 2D view.

In each image, we generate a collection of 2D object
bounding boxes using a state-of-the-art 2D open-vocabulary
detector (OWLv2 [20]) queried with each prompt. These
bounding boxes are used as input to an image segmenta-
tion model (Segment Anything [12]) to produce accurate
2D masks. Finally, we lift each 2D mask to 3D using an
affine-invariant monocular depth estimator (MoGe [36]).

As monocular depth estimators tend to oversmooth
edges, we first filter out depth values with high gradients
(i.e. where normals are close to orthogonal with the view-
ing direction). Due to image noise, or to the presence of
several similar objects in front of each other, the 2D masks
generated by SAM sometimes contain parts of different ob-
jects. To separate erroneously merged objects and remove
background points, we cluster the 3D proposals with DB-
SCAN [9]. We treat large clusters as new proposals, and
remove small clusters and outlier points.

3.2. Multi-view Proposal Refinement

The monocular depth estimator predicts relative depth maps
that are invariant to affine (scale and shift) transformations.
Moreover, the depth maps are often only locally consistent,
thus even if the optimal global shift and scale parameters
are estimated, the depths of individual objects may be in-
accurate. To retrieve accurate 3D positions and sizes for
the 3D proposals, we first find an initial global scale fac-
tor for each input image using multi-view semantic consis-
tency. We then proceed to refine each 3D mask by optimiz-
ing individual scale and shift parameters.

3.2.1. Multi-view Consistency of 3D Proposals

To accurately estimate the 3D positions of the detected ob-
jects we require a multi-view consistency loss, measuring
how much the backprojected proposals from each image are
supported by the other images.

Let {x; }1_, be the pixels belonging to a proposal in the
image Zy. These are lifted to 3D in the camera coordinate
system by backprojecting using the depth as

X = (ady, + B) Ky ', (D)



where dy, is the original mono-depth depth value, and «, 3
are the shift-scale parameters which we aim to recover. Us-
ing the known camera poses and intrinsics, the lifted 3D
point can be projected into the ith view Z; as

I (K;(RiRE (X§™ —to) + ), (2)

where II : RS_ — R? is the pinhole projection function.
Note that x?,*’ is now a function of scale « and shift /.

To measure consistency across images we introduce a
photo-consistency loss as
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where Z;[x] € R3 denotes the image Z; (bi-linearly) inter-
polated at the pixel position x. The loss is normalized over
the reprojected points visible in Z;. To improve robustness
to viewpoint changes and other effects causing photomet-
ric inconsistencies across images we also include a CLIP-
based consistency term in the optimization. For each image
we compute a dense CLIP feature map,

Fi; = CLIP(Z;) 4
and then define the reprojected CLIP loss as
2
%m ZZ H‘F [ proy )] —‘7:0 [Xk]H :
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This term will ensure alignment to similar semantic image
content in cases where the photometric loss is insufficient.

For each 3D proposal, the full consistency measure is
then a weighted combination of these two,

,C(Oé, 6) = ‘Crgb(aa ﬁ) + /\‘Csim(a
where ) is the trade-off hyperparameter.

3.2.2. Global Scale Initialization

In the first step of the shift-and-scale estimation we estimate
a global scaling parameter ovg;0p; Which is used to initialize
the scale « for each proposal in the second step.

To do this we jointly consider all object proposals and
select agionar by sampling. Let a,...,a,, be m scales
uniformly sampled in the range [min, Qmaz|, and let Ly
denote the loss (6) for the kth proposal. We then take

Z Ek(a, 0)

k

,B); (6)

o€ {al,...,ak}}.
(N

As we are only interested in a coarse scale estimate, we only
consider at most M pixels across all proposals to speed up
the process. The motivation for sampling within the de-
tected 2D masks instead of anywhere in the image is to
avoid sampling in background areas, e.g. walls, ceiling, sky,
which are not as helpful for estimating multi-view consis-
tency.

Qglobal = ar'g min {
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3.2.3. Per-mask Refinement

The previous step yields an initial estimate of the scale pa-
rameter «, but to allow for errors in the depth map, we
now optimize an independent « and /3 for each proposal.
This allows us to handle cases where the depth map is not
globally consistent across different scene elements, which
is supported by our ablations (Section 4.5). Each proposal
is then refined by minimizing

min L(a, §), (®)
a,B

initialized with avgope; and zero. The optimization is per-
formed using gradient descent. To speed up the optimiza-
tion, we randomly sample a subset of the mask pixels at
each iteration. Note that as each proposal is optimized in-
dependently, this can be done in parallel.

3.3. Clustering and Fusion

For each image and prompt, we now have a collection of
3D proposals (point clouds). The last step of the pipeline is
now to combine these into the final output bounding boxes.

For this, we use a simple sequential clustering approach.
First, we compute axis-aligned 3D bounding boxes for all
proposals. These are then greedily merged based on their
intersection-over-union (IoU). Finally, for each merged
cluster we compute a bounding box for the union of the
point-clouds.

4. Experiments

4.1. Experimental setup

Datasets. The ScanNet dataset [6] comprises 1,201 train-
ing and 312 validation scenes. We evaluate our method
on the ScanNet10 and ScanNet20 categories defines by Lu
et al. [17, 18]. To demonstrate the open-vocabulary capa-
bilities of our method, we show results on the ScanNet200
benchmark [28], in which the 200 most represented object
classes of ScanNet are split into 3 subsets based on the fre-
quency of the number of labeled surface points in the train-
ing set: head (66 classes), common (68 classes) and tail (66
classes). We also experiment with Replica [32], a dataset of
photo-realistic 3D indoor scenes reconstructed from RGB-
D scans, which contains 48 object classes. To demonstrate
the ability of our method to handle arbitrary queries, we
present qualitative results on data from the OpenSUN3D
challenge [8], featuring ARKitScenes scans [1] with long-
tail prompts.

Evaluation protocol. We follow the class splits of prior
works [11, 18, 28], without using ”seen” classes. We com-
pute axis-aligned bounding boxes from ground-truth seg-
mentations, following [11]. We report the performance on
the validation sets using the mean Average Precision at an
IoU threshold of 0.25, denoted mAPss5.



Method GT Depth 3D proposal Mean | toilet bed chair sofa dresser table cabinet bookshelf pillow  sink
OV-3DETIC [17] 4 3DETRY 12.7 | 49.0 2.6 73 186 28 143 2.4 4.5 39 211
Object2Scene [46] 4 L3DET! 246 | 563 362 161 230 8.1 231 14.7 17.3 234 279
FM-OV3D [41] v 3DETR' 21.5 | 550 388 192 419 23.8 35 0.4 6.0 17.4 8.8
OpenlIns3D [11] v Mask3D' 437 | 795 705 769 158 0.0 | 53.1 40.1 41.2 7.1 | 53.1
SMOV3D (Ours) res-p v - 422 | 835 299 298 @735 258 278 4.1 28.4 61.1 58.6
SMOV3D (Ours) X - 289 | 61.8 259 122 | 61.0 162 200 1.0 233 36.1 318

Table 1. Open-vocabulary Object Detection on ScanNet10. We compare our method to point cloud-based methods (mAP25, %).
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CLIP-3D [25] v 127 | 448 238 175 126 49 132 1.9 4.0 114 176 322 149 114 24 05 145 8.6 15 5.1 4.7
OV-3DET [1§] v 18.0 573 @ 423 27.1 315 8.2 14.2 3.0 5.6 230 316 56.3 11.0 19.7 0.8 0.3 9.6 10.5 38 2.1 2.7
OpenIns3D [11] v 371 | 795 705 769 158 0.0 ['53.1 40.1 41.2 7.1 | 53.1 14.3 321 291 4.8 556 404 41.1 2.6 [ 48.0 6.2
SMOV3D (Ours) RGB-D v 362 | 8.0 287 299 742 289 20.1 3.8 26.3 60.9 60.4 65.9 275 328 534 144 225 150 146 137 458
SMOV3D (Ours) X 21.7 ‘ 545 290 120 @ 599 19.1 16.3 1.0 21.0 357 257 363 15.1 224 33.7 7 2.6 7.8 © 10.7 55 194
Table 2. Open-vocabulary 3D Object Detection on ScanNet20. (mAP25, %).
Implementatlon details. For each s.cene, we §ample 2D Method GTdepth mAPss
views such that each frame has a relative translation greater
than 0.5m or a relative rotation angle greater than 15° from OpenIns3D [11] point-cioud + snap v 21.1
any previously sampled frame. Unless otherwise stated, we OpenIns3D [11] point-cloud + RGB-D v 32.9
then sample at most 32 random views to cover a scene. We SMOV3D (Ours) resp 4 38.9
present results averaged over three random seeds for sam-
SMOV3D (Ours) X 29.3

pling the views. We use OWLv2 [20] as open-vocabulary
2D object detector, and SAM2 [12, 27] to produce the 2D
masks. For monocular depth we use MoGe [36]. To ex-
tract dense CLIP feature maps, we use the MaskCLIP [44]
reparametrization trick with CLIP ViT-L/14. During depth
refinement, we use the AdamW optimizer [15] with a learn-
ing rate of 0.005 and sample 100 points randomly at each
iteration. The weight A is set to 1.0. We tuned our method’s
hyperparameters on a subset of ScanNet’s training set.

Baselines. Since no previous work has tackled open-
vocabulary 3D object detection from sparse multi-view 2D
images, we compare our method to state-of-the-art point
cloud-based methods: OpenIns3D [11], FM-OV3D [41],
Object2Scene [46], OV-3DETIC [17] and OV-3DET [18].
For comparison, we also evaluate our method using the
depth maps provided by the datasets. In this setting, we
use the same view sampling as for our RGB-based method,
and do not perform depth refinement.

4.2. Quantitative Comparison

ScanNet. We first evaluate our method on the ScanNet10
and ScanNet20 benchmarks. As can be seen in Tab. | and
Tab. 2, when using ground-truth depth maps our method
is comparable to Openlns3D and surpasses all other point
cloud-based methods. In this setting, our method is very
simple, as it only involves backprojecting 2D mask propos-
als. Conversely, all other point cloud-based methods use a
3D box or mask proposal network trained on ScanNet.
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Table 3. Open-vocabulary Object Detection on Replica. The
performance of our method on Replica is comparable to its perfor-
mance on ScanNet, demonstrating its ability to generalize. Our ap-
proach has significantly higher mAP than Openlns3D using known
depth either from RGB-D or from ground truth point-clouds. Even
without ground truth depth, it is competitive.

Somewhat surprinsingly, when using only sparse 2D
views, our method still surpasses most existing point cloud-
based methods. Some are monocular methods [17, 18, 46]
that rely on pseudo-3D annotations constrained to the view
frustum during training. As ScanNet images have a narrow
field of view, many objects are truncated and may have vary-
ing shapes during training, which may lead to lower perfor-
mance. As MoGe was not trained on ScanNet, our method
is the only truly zero-shot method in this benchmark.

Replica.  We also evaluate our method on the Replica
dataset, using the same hyperparameters as for ScanNet, to
confirm its ability to generalize. Although there are no pre-
vious results for open-vocabulary 3D object detection on
Replica, Openlns3D is easily adaptable to this task, by con-
verting generated masks into axis-aligned bounding boxes.
We also evaluated OpenIns3D with RGB-D data, using the
same settings used for open-vocabulary instance segmen-
tation on Replica in the original implementation. In this
setting, Openlns3D takes as input the point cloud and 200



Method Head Common  Tail
Object2Scene [46] - 10.1 3.4
OpenIns3D [11] winreep ~ 25.6 20.4 16.5
SMOV3D (Ours) res-p 23.2 25.9 33.2
SMOV3D (Ours) 13.3 18.2 16.7

Table 4. Open-vocabulary Object Detection on ScanNet 200.
We use the whole ScanNet200 vocabulary as prompt (except 'wall’
and floor’), and present results (mAP25) for the Head, Common
and Tail category splits. Our method performs just as well on long-
tail classes (Tail) as on the most frequent ones (Head).

RGB-D images per scene.

As shown in Tab. 3, the performance of our method
on Replica is comparable to its performance on ScanNet,
demonstrating its ability to generalize. On the other hand,
Openlns3D’s performance dropped. This decrease is com-
patible with the decrease observed on the segmentation task
in the original paper, and might be due to the mask proposal
model’s struggle to generalize to Replica.

Long-tail 3D Object Detection. To study our method’s
zero-shot generalization ability, we evaluate it on the Scan-
Net200 benchmark. During evaluation, we use the whole
ScanNet200 vocabulary (except, as is usual, 'wall’ and
floor’), and present results for the Head, Common and
Tail category splits. We compare with Object2Scene [46],
which used the Head as seen classes, and Openlns3D. Fol-
lowing the authors’ advice, we only present results for
Openlns3D with RGB-D data. The results can be seen in
Tab. 4. SMOV3D achieves strong performance on tail cat-
egories, even surpassing its performance on common cat-
egories. While counter-intuitive, this can be explained by
our training-free approach. Unlike methods trained or fine-
tuned on 3D datasets, SMOV3D relies solely on the gener-
alization of the 2D foundation models and does not inherit
the dataset’s label frequency biases.

4.3. Qualitative Results

In Fig. 1, we show an example of 3D object detection with
a free-text prompt (”Playing music”) in a ScanNet scene.
The figure also shows posed cameras and 2D mask propos-
als. In Fig. 3, we visualize 3D bounding boxes predicted by
our method when prompted with the ScanNet10 categories.

Figure 5 presents qualitative results using scenes and
queries from the OpenSUN3D challenge [8], which features
ARKitScenes [1] scans paired with long-tail prompts. It
demonstrates the ability of our method to perform zero-shot
detection from free-form text queries in realistic scenes.
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4.4. Using Few Views

Current open-vocabulary 3D detection benchmarks rely ei-
ther on 3D scenes reconstructed offline, or on monocular
RGB-D images following a scanning trajectory. We argue
that these approaches are ill-suited for many practical use
cases, as detecting new or moved objects would require a
complete rescan of the scene. A more realistic setting for
many applications such as facility management or retail is
to consider systems with few fixed, pre-calibrated cameras,
delivering predictions at regular intervals.

To address this gap, we emulate a fixed-camera instal-
lation in the Replica dataset by placing 4 cameras at room
corners near the ceiling and recursively placing a camera
between each pair to obtain 8 and 16 views. We compare to
Openlns3D using the same views, and to Openlns3D with
Snap & Lookup. Note that Openlns3D still uses the full
point cloud for mask proposal, including points that are not
visible in any of the views.

SMOV3D takes 15.6, 26.7 and 50.5 seconds to perform
full-scene detection on an RTX 4090 with 4, 8 and 16 RGB
views respectively. As shown in Fig. 4, with as few as
4 RGB images, our method significantly outperforms the
point-cloud-based Openlns3D. We also present qualitative
results in Fig. 6, showing camera placement and predicted
bounding boxes.

This experiment shows that this simple approach is well-
suited for applications requiring continuous monitoring un-
der practical constraints.

4.5. Ablation Study

In Tab. 5, we analyze key components of our method on
ScanNet10. With global scale initialization only, i.e. es-
timating one scale parameter for each view, our method,
though simple, already achieves results comparable to point
cloud-based methods. Refining the depth maps for each ob-
ject mask separately using any combination of L, and
Lgim provides an improvement. We believe this is due to
the depth maps only being locally consistent.

We also implemented a depth refinement method min-
imizing a multi-view depth consistency loss Lgeptp, de-
fined as the L loss between the estimated depth of proposal
points in one view and the depths of their reprojections in
other views. This leads to degraded results, further showing
that the initial monocular depth maps are geometrically in-
consistent.The best performance is obtained by refining the
depth maps for each object mask separately using both the
photometric loss L, 4, and the CLIP similarity loss L,
yielding a 12% relative improvement in the mAPs5 metric.

5. Limitations and Future Work

Under severe occlusions, some objects are only visible in
one view. While global depth initialization provides some
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Figure 3. Qualitative results on ScanNet. Zero-shot 3D object detection, using the ScanNet10 categories as prompts. Best seen on screen.
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8
Number of Views

Figure 4. Few views. We report mAP»5 scores (%) on the Replica
dataset with few views chosen so that the entire scene is visible,
and compare to Openlns3D.

robustness, severe cases can lead to mis-localization during
per-mask refinement.

Due to motion blur, occlusions or bad lighting condi-
tions, some objects may be classified differently across
views, causing overlapping 3D detections. Some occur-
rences of this problem can be seen in Fig. 3 and Fig. 6,

2597

Depth refinement ‘ Laepth  Lrgy  Lsim ‘ mAP25

Global scale \ v \ 25.7
v 24.1

v 26.1

Per-mask v 278
v v 28.9

Table 5. Ablation on different aspects of depth refinement.
Evaluated on ScanNet10 (mAP2s5, %). Per-mask depth refinement
using the photometric and CLIP consistency losses yields the best
results.

e.g. for the “chair” and ”couch” classes. Future work could
incorporate more sophisticated fusion logic.

Our method relies on accurate camera poses for back-
projection. Its performance may degrade with noisy camera
calibrations, a factor we have not explored in this work.

There remains a performance gap between our RGB-



”Christmas stockings” ”Heart-shaped pillow”

”Lego head” ”Winnie-the-Pooh”

Figure 5. Qualitative results on ARKitScenes. Zero-shot 3D object detection, using the prompts proposed in the OpenSUN3D challenge.

room0, 4 views

office2, 8 views

Ground truth

Openlns3D

SMOV3D

Figure 6. Qualitative results with few views results on Replica. Zero-shot 3D object detection, using the Replica categories as prompts.

only method and methods using ground-truth depth. While
SMOV3D narrows this gap significantly, improving monoc-
ular depth estimation or developing new refinement strate-
gies to close it further are promising directions for future
research.

6. Conclusion

In this work, we have conducted an in-depth study on the
effectiveness of 2D foundation models for open-vocabulary
3D detection from sparse RGB views. Our proposed
baseline, SMOV3D, demonstrates that a straightforward,
training-free approach can achieve highly competitive re-
sults, particularly in challenging sparse-view and long-tail
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scenarios where trained methods may struggle. Our work
shows that dense 3D geometry is not always a prerequi-
site for accurate 3D perception, and that the generalized
knowledge embedded in 2D foundation models represents
a powerful and practical resource that can be leveraged di-
rectly. Further, by not having any learned 3D component,
our method does not rely on having access to 3D data for
training or fine-tuning, making it easy to apply in new set-
tings.
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