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Figure 1. During testing, Open-Vocabulary 3D Instance Segmentation (OV-3DIS) utilizes CLIP to generate confidence scores for provided
text prompts. However, its reliance on a predefined vocabulary during inference necessitates human intervention, restricting autonomy
in intelligent agents. In contrast, our proposed Open-Ended 3D Instance Segmentation (OE-3DIS) leverages Large Language Models to
enable open interaction with humans, recognizing fine-grained objects without being constrained by predefined class labels.

Abstract

Open-vocabulary 3D Instance Segmentation methods
(OV-3DIS) have recently demonstrated their generalization
ability to unseen objects. However, these methods still de-
pend on predefined class names during inference, restrict-
ing agents’ autonomy. To mitigate this constraint, we pro-
pose a novel problem termed Open-Ended 3D Instance
Segmentation (OE-3DIS), which eliminates the necessity
for predefined class names during testing. We present a
comprehensive set of strong baselines inspired by OV-3DIS
methodologies, utilizing 2D Multimodal Large Language
Models. In addition, we introduce a novel token aggrega-
tion strategy that effectively fuses information from multi-
view images. To evaluate the performance of our OE-3DIS
system, we benchmark both the proposed baselines and our
method on two widely used indoor datasets: ScanNet200
and ScanNet++. Our approach achieves substantial perfor-

*These authors contributed equally to this work

mance gains over the baselines on both datasets. Notably,
even without access to ground-truth object class names dur-
ing inference, our method outperforms Open3DIS, the cur-
rent state-of-the-art in OV-3DIS. Source code available at:
https://github.com/PhucNDA/OE-3DIS.

1. Introduction

3D point cloud instance segmentation (3DIS) [5, 25, 30, 37,
50, 52], also known as closed-vocabulary 3D instance seg-
mentation, aims to segment all points in a point cloud into
instances of classes predefined in the training set. How-
ever, this approach is less practical for scenarios where
the test classes are unknown or different from the train-
ing classes. This limitation has led to the development
of open-vocabulary 3D instance segmentation (OV-3DIS)
[28, 35, 39, 51, 55, 57]. Despite these advancements, OV-
3DIS methods face several practical challenges. One major
challenge is that class names must be predefined during in-
ference, necessitating human intervention for scene under-
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standing. This requirement significantly impedes the per-
ception of truly autonomous agents. A potential solution is
to predefined large and comprehensive vocabularies; how-
ever, this can lead to inaccuracies and significantly degrade
the performance of OV-3DIS when an excessive number of
vocabularies are used.

To overcome these limitations, we introduce a novel task
called Open-Ended 3D Point Cloud Instance Segmenta-
tion (OE-3DIS) see Fig. 1. Unlike traditional methods, OE-
3DIS does not require predefined class names during test-
ing. Given a 3D point cloud and RGBD sequence, the sys-
tem automatically generates a set of 3D masks along with
their class names. To evaluate the performance of OE-3DIS
methods, we follow [46] to leverage an adaptive protocol of
standard AP score calculation. To tackle this new and chal-
lenging task, we introduce a novel method along with our
proposed three established baselines that leverage OV-
3DIS techniques and Multimodal Large Language Mod-
els (MLLMs). In the first two baselines, class names are
either predefined from extensive vocabularies or extracted
using image taggers. The third baseline employs 2D vi-
sual tokens, obtained from a pretrained 2D CLIP encoder,
which are then processed through a Visual Token Aggre-
gation mechanism before being fed into an LLM to predict
class names. Finally, our proposed method takes this further
by consistently aggregating 2D visual tokens from multi-
view images, transforming them into dense 3D point cloud
tokens that enable real-time querying. Notably, our point-
wise visual token lifting approach, which feeds these tokens
into an LLM, achieves the best performance across mul-
tiple benchmarks, matching state-of-the-art OV-3DIS meth-
ods that rely on ground-truth class labels. Furthermore, both
our proposed method and designed baselines are entirely
training-free, utilizing only pretrained 2D vision encoders
(e.g., CLIP [43]) and pretrained LLMs (e.g., Vicuna [10]).
The training-free approach effectively mitigates the preva-
lent issue of insufficient training data that hampers many
existing 3D-LLM techniques.

To evaluate the performance of these methods, we con-
duct experiments on open-ended versions of two prominent
3D instance segmentation (3DIS) datasets: ScanNet200
[49] and ScanNet++ [56]. The results underscore the ef-
ficacy of our chosen approach over alternative baselines,
demonstrating performance levels comparable to OV-3DIS
methods that rely on ground-truth class names. Specifically,
in ScanNet200, our approach attained an AP of 16.0, con-
trasting with the 22.2 AP achieved by Open3DIS, currently
recognized as the state-of-the-art in OV-3DIS. However, our
approach is superior in ScanNet++, where it outperforms
Open3DIS by a significant margin (18.4 vs. 13.1 in AP).

In summary, the contributions of our work are:
1. We propose Open-Ended 3D Point Cloud Instance Seg-

mentation (OE-3DIS), a task that segments 3D point

clouds by instances and generates class names without
predefined labels.

2. We establish solid baselines for OE-3DIS, including
leveraging OV-3DIS methods and Multimodal Large
Language Models (MLLMs).

3. We present a training-free OE-3DIS method that lifts 2D
visual tokens to 3D and utilizes pretrained Multimodal
LLMs to output the final object classes.

2. Related Work

3D instance segmentation (3DIS) methods such as
Mask3D [50], ISBNet [37], PointGroup [30], and others
[2, 34, 47, 48] cluster a point cloud scene into 3D instance
masks of classes predefined in the training set. These meth-
ods utilize a 3D Convolutional backbone [11, 12, 15] to
extract semantic information from the 3D scene. Subse-
quently, they employ either Dynamic Convolution-based
[25] or Grouping-based [52] modules to generate 3D in-
stance masks. Recently, some approaches have adopted
techniques to back-project 2D information aggregated from
multiple views onto the 3D point cloud to create an ensem-
ble of 3D point cloud features [23, 28, 41, 42]. These 2D-
derived features contain rich semantic information, while
those derived from 3D capture the geometrical structure of
3D objects. Combined, they supervise a 3D instance de-
coder to refine segmentation masks. However, these meth-
ods are closed-vocab or cannot segment new classes in test-
ing, limiting the capability to understand new 3D scenes.

Open-vocabulary 3D instance segmentation (OV-3DIS)
aims at segmenting 3D objects of classes newly provided
in testing. To provide 3D proposals for object recogni-
tion, OpenMask3D [51] and Lowis3D [21] employ 3DIS
networks [37, 50] to generate class-agnostic 3D proposals,
while SAI3D [57], MaskClustering [55], OVIR [35] and
Any3DIS [38] utilize 2D segmenter for producing masks
for each view and lift these masks to 3D. While 3DIS net-
works excel in capturing large geometrical structures, they
often struggle to detect rare and small-shaped objects. Con-
versely, 2D segmenters are adept at focusing on small re-
gions but face challenges in maintaining object consistency
when lifting to the 3D point cloud. Open3DIS [39] ad-
dresses these limitations by combining both 3D and 2D
branches, resulting in superior results. This approach effec-
tively captures rare and small objects while preserving the
3D geometrical structures of large objects using superpoint-
level masks. While OV-3DIS is useful in some scenarios,
the constraint of a predefined vocabulary set in inference
requires human intervention, hindering very autonomous
agents.

3D scene understanding with Large Language Models
(LLMs). Utilizing LLMs for 3D scene understanding fo-
cuses on how objects are aligned, their directions, and their
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locations based on textual questions within 3D environ-
ments. This approach emphasizes the spatial aspects of lan-
guage understanding in three dimensions of data. Previous
works [1, 3, 4, 26, 27] have contributed to providing 3D spa-
tial data with language for various applications, including
3D instance and scene captioning [6–8, 26, 27, 53, 64], 3D
visual answering questions [3, 6, 19, 26, 27, 36, 40, 64], 3D
visual grounding [1, 4, 26, 27, 54, 64] and supporting em-
bodied AI tasks like planning and reasoning [6, 26, 27, 64].

Open-ended 2D Image Understanding is an emerging
task that addresses the need to recognize objects without
predefined class names during training or testing. There is
scant work on this task, with existing research primarily fo-
cusing on image classification [14, 29, 61], object detection
[13], and instance segmentation [58–60]. Standard 2D Mul-
timodal LLMs (2D MLLMs), such as LLAVA [33], consist
of a frozen vision encoder, a projector, and an LLM mod-
ule. These models typically finetune either (1) the linear
projector and the LLM or (2) a complex Q-Former projec-
tor. However, applying these methods for 3D scene under-
standing (3D-LLMs) is challenging due to the lack of suffi-
cient 3D data and text description pairs to effectively train
3D-LLMs. In this paper, we present a novel approach to
leveraging pretrained 2D MLLMs for OE-3DIS.

OmniScient Model (OSM) [59] is a recently proposed
pretrained 2D Multimodal LLM for Open-ended 2D In-
stance Segmentation, which serves as the foundation for
our proposed method. OSM comprises three main mod-
ules: a visual encoder, a MaskQ-Former, and a Large Lan-
guage Model (LLM). The visual encoder is a pretrained
EVA-CLIP [22], a variant of the CLIP model [43], which
extracts high-resolution visual features using a sliding-
window scheme and incorporates global positional embed-
dings to preserve spatial information. The MaskQ-Former,
a customized version of Q-Former [18] designed to focus
on the mask region rather than the entire image, converts
visual features into fixed-length visual tokens. These to-
kens are then input into the Vicuna LLM [10]. The LLM
processes these tokens to answer the question, “What is in
the segmentation mask?” by outputting the object name.

In OSM, only the MaskQ-Former is trained to align vi-
sual features with the visual tokens for the LLM, while the
visual encoder and LLM remain unchanged. The train-
ing datasets are large, including COCO [32], LVIS [24],
ADE20K [62], and Cityscapes [16]. This setup demon-
strates a strong capability for recognizing objects without
predefined class names in 2D images, inspiring us to extend
this approach to 3D scene understanding.

3. Methodology
3.1. Problem Statement
Given a 3D point cloud scene P = {pi}Ni=1 ∈ RN×6

consisting of N points with xyz coordinates and associ-
ated rgb colors, along with T RGB-D frames with color
images {It}Tt=1 and depth ones {Dt}Tt=1, where It ∈
RH×W×3,Dt ∈ RH×W

+ , we aim to segment all K object
binary masks {mk}Kk=1, mk ∈ {0, 1}N and their associated
class names {lk}Kk=1 without giving any predefined class
names in inference. Of course, we do need GT class names
during evaluation to assess our method’s performance.

The information includes the intrinsic Γ ∈ R3×3 and the
extrinsic [R|v]t ∈ R3×4. In this context, H and W repre-
sent the height and width of the image, respectively. The
matrix R is a 3D rotation matrix, while v is a 3D trans-
lation vector. This composite matrix, which combines ro-
tation and translation, converts coordinates from the global
frame of the point cloud to the camera’s frame at view t.

3.2. Evaluation Metrics
To evaluate open-ended object detection or instance seg-
mentation, where predicted class names may be similar but
not exactly the same as ground-truth (GT) class names,
prior work [46] proposed a label reassignment technique.
This method uses text encoders (e.g., CLIP [43], BERT
[20], Sentence Transformer [44] to encode both the pre-
dicted and GT class names for each scene. It then matches
each predicted class name to its closest GT class name
based on cosine similarity. After this matching, the stan-
dard AP score is used to evaluate performance.

3.3. Proposed Baselines
Since OE-3DIS is very new and challenging, we focus our
efforts on investigating prominent baselines. These base-
lines are illustrated in Fig. 2. They require a list of class-
agnostic 3D mask proposals pre-extracted from Open3DIS
[39] with the DETIC 2D segmenter.

Large-vocab approach (Fig. 2 - Left): We start with a sim-
ple OE-3DIS baseline by using a large vocabulary of 21K
common classes introduced by DETIC [63] as predefined
class names for OV-3DIS methods like Open3DIS [39] and
OpenMask3D [51]. However, this approach fails to achieve
robust class prediction. This is because the fixed large vo-
cabulary set contains multiple synonyms, resulting in unin-
formative class predictions after the Softmax operation.

Image Tagging approach (Fig. 2 - Middle): To reduce the
number of classes, we leverage image-tagging techniques
such as RAM++ [29] to obtain only relevant class names
per scene. Specifically, for each input view, a set of image
tags is generated and then combined across all processed in-
put views. The resulting unified tag set serves as the vocab-
ulary for OV-3DIS. However, these methods often produce
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Figure 2. Our baselines: Large-vocab (Left), Image tagging (Middle), and Maskwise (Right).

inconsistent class names across views, leading to redundant
and similar class names.

Maskwise approach (Fig. 2 - Right): To tackle the incon-
sistency in class names across views, we first apply an OE-
2DIS method, such as OSM [59], to each view to obtain
a list of 2D masks and their predicted fixed-length visual
tokens. For each 3D mask proposal, we project it onto a
view and associate it with the best-matched 2D mask based
on IoU to obtain its 2D fixed-length visual tokens. The 3D
visual tokens for the 3D mask are then aggregated by av-
eraging the 2D visual tokens across views, which are sub-
sequently input into a pretrained LLM to obtain the final
class names. However, this approach relies on matching 3D
proposals with 2D masks, which is often misaligned due to
segmentation and depth map imperfections. A 3D mask can
project onto multiple 2D masks, and selecting only the best
match may discard valuable information.

3.4. Our Approach

To address the above limitations, we propose a method
for producing pointwise 3D visual tokens, as illustrated in
Fig. 3. First, we generate class-agnostic 2D instance seg-
mentation masks for all views using class-agnostic 2D seg-
menters such as DETIC [63] and SAM [31]. Next, we lift
2D masks into 3D masks using Open3DIS [39]. Simultane-
ously, these 2D masks, along with their corresponding RGB
images, are used to extract 2D visual tokens from an MLLM
like OSM [59]. We then lift the resulting 2D visual tokens
F2D into 3D visual tokens to obtain pointwise 3D visual to-
kens F3D. Finally, for each 3D proposal mask, we query the
3D visual tokens associated with this proposal by aggregat-
ing the pointwise lifted 3D visual tokens, forming the final
tokens f 3D for input to the LLM. This approach takes into
account the depth and geometric structure of 3D objects via

lifting, resulting in more robust visual tokens and a unified,
densely-featured point cloud that can be queried instantly
at test time. Subsequently, we will focus on our pointwise
visual tokens lifting and aggregation.

Concretely, first, the correspondence of a 3D point
pi(x, y, z) ∈ P with its 2D projection (u, v) in view t is:

di,t ·

ui

vi
1


t

= Γ · [R|c]t ·


xi

yi
zi
1

 (1)

where di,t is the projected depth of point i to frame t.
Next, for each view t, we extract the 2D visual tokens

Fk,2D
t ∈ RE×C , where E,C are the number of visual to-

kens and feature dimensions, for each 2D mask k from the
MaskQ-Former module of OSM [59]. Furthermore, we de-
note λk

t,i = {0, 1} as the visibility value indicating a point i
is visible in mask k of view t, λk

t = {0, 1}N . We set the vis-
ibility value λk

t,i of any points whose pixel projections fall
outside the k-th 2D mask’s boundaries or the disparity be-
tween projected depth d and the collected depth D exceeds
a defined depth threshold τdepth, or |di,t −Dt[⌊ui⌋, ⌊vi⌋]| >
τdepth, to 0. Then, we accumulate 3D visual tokens F3D ∈
RN×E×C , from every 2D mask k and compute for the fre-
quency r3D ∈ NN of every view as follows:

F3D =
∑
t,k

λk
t ∗ Fk,2D

t , r3D =
∑
t,k

λk
t , (2)

where ∗ is the outer product operation. The normalized
pointwise 3D visual tokens are then obtained as follows:

F̄3D
i =

{
F3D

i /r3D
i if r3D

i > 0

0 otherwise
. (3)
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Figure 3. Overview of our approach. First, we generate class-agnostic 2D instance segmentation masks for all views using segmenters
like DETIC [63] and SAM [31], and lift these 2D masks into 3D masks using Open3DIS [39]. Simultaneously, the 2D masks and their
corresponding RGB images are used to extract 2D visual tokens from an MLLM like OSM [59], which are then lifted into pointwise 3D
visual tokens. Finally, for each 3D proposal mask, we aggregate the pointwise 3D visual tokens to form the final tokens for input to the
LLM to predict final class names.

Finally, for each 3D mask mk, we weighted average the
visual tokens of all its points by their frequency to obtain
the 3D visual tokens f 3D

k for that mask, which are then used
as input to the LLM to predict the final class, as follows.

f 3D
k =

∑
i∈mk

F̄3D
i · r3D

i∑
i∈mk

r3D
i

. (4)

4. Experimental Results

Datasets: We conducted experiments to assess the perfor-
mance of the baselines and our proposed method using two
common 3DIS datasets: ScanNet200 [49] and ScanNet++
[56]. The ScanNet200 dataset builds on the original Scan-
Net [17] by expanding its semantic categories from 20 to
200. Its instance segmentation benchmark includes 1,201
training scenes and 312 validation scenes with 198 object
categories, significantly enriching the vocabulary and en-
hancing its capability for detailed 3D semantic and instance
segmentation. The ScanNet++ dataset was recently intro-
duced, featuring up to 1,659 semantic categories, with 360
training scenes and 50 validation scenes. Given the large
number of classes, we follow the standard 3DIS evaluation
protocol on ScanNet++ and evaluate only the most common
100 object categories. This dataset offers a much denser 3D
point cloud scene representation, making it the most chal-
lenging dataset for 3D understanding.

Evaluation metrics: We assess OE-3DIS using the AP
score of reassignment of the label (detailed in Sec. 3.2). For
ScanNet200, we also report APh (head), APc (common),
and APt (tail). For ScanNet++, we include the recall rate
(RC) and the average recall rate (AR). We note that the OV-
3DIS methods adopt a specific AP score calculation proto-
col by assigning a confidence score of 1.0 to each 3D pro-
posal. Similarly, we follow the same evaluation protocol as
the Fully-sup 3DIS by ranking 3D proposals according to
their confidence scores. In the context of OE-3DIS, our ap-
proach utilizes the confidence scores generated by the LLM,
while potential baselines employ the CLIP score.

Implementation details: Following Open3DIS [39], we
generate class-agnostic 3D proposals from ISBNet [37] pre-
trained on ScanNet200 or by lifting 2D masks to 3D us-
ing Detic [63]. For RAM++ [29], we employ the Swin-L
model, trained on a 14-million image dataset with an image
size of 384px and a tagging threshold of 0.68. For LLM,
we leverage Vicuna-7B [9], fine-tuned for open-ended 2D
Instance Segmentation [59].

4.1. Comparison with Baselines
We compare our approach to the proposed baselines using
the OE-3DIS setting on the ScanNet200 and ScanNet++
datasets in Tab. 1. For reference, we also present results
from OV-3DIS methods, including OpenMask3D [51] and
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Setting Method ScanNet200 ScanNet++

AP AP50 AP25 APh APc APt AP AP50 AP25 AR RC50 RC25

Mask3D [50] 26.9 36.2 41.4 39.8 21.7 17.9 8.9 14.6 38.9 - - -
Fully-sup 3DIS

ISBNet [37] 24.5 32.7 37.6 38.6 20.5 12.5 16.7 29.7 21.0 - - -

OpenMask3D [51] 15.4 19.9 23.1 17.1 14.1 14.9 2.0 2.7 3.4 4.6 8.3 12.4
OV-3DIS

Open3DIS [39] 23.7 29.4 32.8 27.8 21.2 21.8 13.1 20.8 24.6 22.1 33.9 39.1

Large-Vocab 21K DETIC classes (Ours) 8.5 11.7 13.1 9.9 7.2 8.3 7.3 11.9 15.2 13.3 20.3 23.6
Image-Tagging RAM++ [29] (Ours) 10.7 14.3 16.0 11.6 11.0 9.3 9.1 15.5 19.1 16.0 24.8 28.7
Maskwise OSM [59] (Ours) 14.4 19.8 23.9 18.9 13.5 10.2 16.3 24.8 29.0 22.2 32.0 36.0

Pointwise Ours 16.0 22.0 24.7 20.0 14.3 13.2 18.4 29.4 33.6 23.3 35.2 39.3

Table 1. Comparative results on the ScanNet200 and ScanNet++ datasets. Shaded text indicates a reference method, not a direct compar-
ison. ‘-’ indicates results are not provided. The best results are in bold.

Open3DIS [39], as well as fully-supervised methods like
ISBNet [37] and Mask3D [50] for ScanNet200; and Point-
Group [30] and SoftGroup [52] for ScanNet++.

For Scannet200: We obtain class-agnostic 3D proposals
from two sources: 3D masks from a 3DIS network such as
ISBNet [37], and 2D Lift 3D masks from Open3DIS [39].
Our proposed approach outperforms other baselines in the
AP score. Furthermore, the performance progression of the
baselines, in the specified order, clearly justifies the mo-
tivation behind each baseline compared to its predecessor,
as discussed in Sec. 3.3. Interestingly, our approach also
surpasses OpenMask3D [51] (16.0 vs. 15.4 in AP), even
though OpenMask3D utilizes provided class names. This
indicates that, in some cases, we can achieve OV-3DIS with-
out relying on provided class names.

For ScanNet++: Due to the extensive scale and vast array
of classes in ScanNet++, the performance of 3D mask re-
sults from ISBNet is inadequate. Consequently, we solely
rely on the utilization of 2D Lift 3D masks from Open3DIS
[39]. We notice a consistent trend akin to the results ob-
served in ScanNet200. Particularly noteworthy is the sig-
nificant outperformance of our approach compared to OV-
3DIS methods or even fully supervised 3DIS, as evidenced
by higher AP scores. This underscores the promising appli-
cation of OE-3DIS in navigating complex 3D scene.

Qualitative comparison: In Fig. 4, both our proposed ap-
proach and baseline methods effectively assign class names
to 3D proposals under OE-3DIS settings. The first column
of qualitative results on ScanNet200 demonstrates that our
architectures correctly predict class labels for all 3D propos-
als. The second column highlights notable differences, with
our method accurately identifying the ‘painting’ object as a
‘wall painting’, whereas the baselines produce less precise
labels. In the final column, our detailed 3D mask propos-
als surpass the granularity of the ground-truth annotations,
enabling accurate recognition of classes absent from Scan-
Net++’s vocabulary, such as ‘photocopier’. This illustrates

Technique AP AP50 AP25 APh APc APt

L2 Norm (Open3DIS) 5.7 8.2 9.8 6.8 4.9 5.2
Memory Fusion (OVIR-3D) 8.4 11.6 14.4 7.2 7.0 11.6
Max 6.3 8.4 10.2 8.5 4.7 5.6
Random 13.2 18.9 21.6 17.7 12.3 10.0
Mean 14.5 20.1 22.6 18.2 13.1 11.2
Weighted Average (Ours) 16.0 22.0 24.7 20.0 14.3 13.2

Table 2. Ablation on point aggregation techniques

3D Proposals 2D Masks AP AP50 APh APc APt

3D masks DETIC 11.7 16.0 16.3 10.3 8.1
2D Lift 3D masks DETIC 11.7 18.6 11.3 12.1 11.8

3D + 2D Lift 3D masks DETIC 16.0 22.0 20.0 14.3 13.2
3D + 2D Lift 3D masks SAM 15.4 20.5 19.2 14.8 11.7

Table 3. Study on different types 3D proposals.

Text Encoder AP AP50 AP25 APh APc APt

BERT [20] 13.5 19.0 21.2 17.6 11.6 11.0
CLIP [43] 15.9 22.0 24.5 20.3 13.7 13.3
Sentence Transformer [44] 16.0 22.0 24.7 20.0 14.3 13.2

Table 4. Study on different text encoders in evaluation metrics

how OE-3DIS allows the model to comprehensively under-
stand a 3D scene without restricting to fixed categories.

4.2. Ablation Study
To study many design choices of our pointwise approach,
we intensively carry out ablation study on the ScanNet200
[17] dataset.

Study on different point feature aggregation techniques
(Eq. (4)) is shown in Tab. 2. We evaluate four techniques for
combining point features from a given 3D mask: L2-norm,
max, random (randomly selecting one point), mean, and
weighted average (our proposed operation). The weighted
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Figure 4. Qualitative examples are provided for ScanNet200 [17] (first two columns) and ScanNet++ [56] (last two columns). Both our
baselines and approach yield notably good results, particularly in terms of accurately identifying class names even though they do not
match exactly the GT classes.

Modules # Params(M) FLOPs (G) Time (s)

Pw. CLIP extract (CLIP) 427.94 191.11 97
QFormer 185.66 2.74 250
LLM (Vicuna 7B) 6,738.42 850.01 50
RAM++ 329.49 104.43 40
Generate 3D proposals N/A 357.99 152
Pw. Visual Token Lift (PVTL) N/A 4.915 314

Table 5. Expected latency, FLOPs, and runtime of each module
for a 3D scene. Pw. denotes ‘Pointwise’. Generating 3D proposals
from 2D and Pw. visual token lifting are non-parametric modules

average technique achieved the highest performance with an

AP score of 16.0, outperforming the other methods. Con-
sequently, we utilized the weighted average technique in all
our experiments.

Study on different types 3D proposals. As reported in
Tab. 3, combining 3D proposals from both 3D masks and
2D Lift 3D masks yielded the most favorable results. This
outcome validates our choice of 3D proposals for the Scan-
Net200 dataset. Additionally, the 2D Lift 3D proposals
obtained from DETIC demonstrated slightly superior per-
formance compared to those from SAM. This observa-
tion diverges from the methodology adopted in Open3DIS
[39], where provided class names are utilized to employ
Grounded-SAM [45] instead of SAM [31], as in our OE-
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Method AP Total Time (s) RAM++ Generate 3D proposals CLIP QFormer PVTL LLM

Open3DIS N/A 249 ✓ ✓
Large Vocab 8.5 249 ✓ ✓
Image Tagging 10.7 289 ✓ ✓ ✓
Maskwise 14.4 452 ✓ ✓ ✓
Pointwise 16.0 766 ✓ ✓ ✓ ✓

Table 6. Expected runtime for our proposed baselines and methods with the Open3DIS for a sample 3D scene

Text Prompt AP

“What is in the segmentation mask? Assistant:” 16.0
“Can you describe what is in the segmentation mask region? Assistant:” 15.3
“What can you see in the segmentation mask region? Assistant:” 15.9
“Could you use a few words to describe what is in the segmentation mask? Assistant:” 15.2
“What is this segmentation mask? Assistant:” 15.8

Table 7. Study on different text prompts used to query the LLM.

3DIS scenario.

Study on different text encoders for evaluation metrics is
described in Tab. 4.We evaluate three text decoders: BERT
[20], CLIP [43], and Sentence Transformer [44]. Among
these, Sentence Transformer embeddings achieve the high-
est AP scores, outperforming CLIP and BERT, which yield
comparatively lower scores. We also observe that CLIP
embeddings exhibit greater similarity among themselves
compared to those from BERT. Moreover, Sentence Trans-
former embeddings are better suited for capturing complex
sentence-level descriptions rather than focusing solely on
individual class names. Therefore, we recommend Sen-
tence Transformer as our preferred text encoder.

Latency analysis of our baselines and proposed method
is presented in Tab. 5 (excluding the runtime for generat-
ing 2D proposals). Additionally, Tab. 6 compares the to-
tal runtime across our baselines, proposed methods, and the
state-of-the-art 3DIS approach, Open3DIS. As shown, our
method prioritizes accuracy at the cost of increased runtime,
meaning higher accuracy comes with slower execution.

Study on different text prompts used to query the LLM:
We experiment with various input text prompts to query the
LLM for class names. Tab. 7 demonstrates that altering
the prompt subtly affects the model’s accuracy. We select
the prompt “What is in the segmentation mask? Assistant:”
from the variants for our approach.

5. Discussion and Conclusion

Limitations: The motivation behind our proposed Open-
ended 3D Instance Segmentation (OE-3DIS) arises from
limitations in current Open-Vocabulary 3D Point Cloud In-
stance Segmentation (OV-3DIS) methods, which still de-

pend on a predefined set of class names during testing. This
constraint is impractical in scenarios lacking prior knowl-
edge of class names, such as a robot navigating unfamil-
iar environments. Although our method advances open-
ended 3D scene understanding, it still faces notable limi-
tations. Firstly, our approach heavily depends on 2D vi-
sual tokens extracted from a pretrained OSM, which itself
is trained on instance segmentation datasets containing only
a limited number of classes. Consequently, this restricts
the model’s capability to recognize an extensive range of
classes in truly open-world contexts. Secondly, the per-
formance of OE-3DIS relies significantly on class-agnostic
3DIS methods, whose effectiveness in turn depends on the
accuracy of 3D representations and the quality of 2D-to-
3D mapping, including factors like camera calibration and
depth image quality.

Conclusion: We have introduced Open-Ended 3D Point
Cloud Instance Segmentation (OE-3DIS), which generates
3D masks and object class names without predefined la-
bels during testing. We have explored baselines using
OV-3DIS methods and MLLMs, and introduced a point-
wise training-free approach leveraging OSM. Experiments
on ScanNet200 and ScanNet++ show our approach’s supe-
rior performance, notably outperforming Open3DIS (SOTA
on OV-3DIS) on ScanNet++ without ground-truth class
names.
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Siméoni, Corentin Sautier, Patrick Pérez, Andrei Bursuc, and
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