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Abstract

Diffusion models have shown notable success in generat-
ing images conditioned on textual prompts, enabling users
to edit images at a coarse scale with well-aligned text-to-
image models. ControlNet [31] enhances these capabilities
by allowing diffusion models to edit aspects such as pose,
position, and edges according to reference visual motion in-
formation in a qualitative manner. However, diffusion mod-
els still face challenges in measurable and quantitative ap-
plications, such as applying sharpening or color enhance-
ment effects. We call quantities such as brightness and sat-
uration, attributes. In this work, we introduce Target At-
tribute Diffusion Models (TADM), which enable diffusion
models to incorporate additional conditioning on continu-
ous random variables. Unlike classifier-guidance methods,
which require training an explicit classifier [30], TADM
supports real-valued conditional variables. We also pro-
pose a new architecture called attribute carrier between the
text embeddings and the new conditioning variable. Experi-
ments were conducted on three attributes: color saturation,
sharpness and human preference. TADM outperformed the
baseline algorithm on a single prompt, single attribute ex-
periment. In addition, TADM demonstrates improvement in
the multiple prompt experiments with respect to two of the
three attributes.

1. Introduction

With the advancement of text-to-image diffusion models
[19-21], users can create high-quality images simply by
typing text prompts. However, precisely controlling the
properties of these models to achieve desired results re-
mains a significant challenge. For instance, specifying de-
tails like color saturation, sharpness, and brightness can be
difficult to convey through text alone. Generating images
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that meet users’ exact requirements often requires numerous
cycles of trial and error with prompt adjustments, leading to
substantial time and resource consumption.

In this work, we use the term attribute to refer to real-
valued properties, including color saturation, sharpness, and
more. A natural question arises: how can we enable fine-
grained attribute control in pre-trained text-to-image diffu-
sion models by allowing users to provide a target attribute
that directly specifies their desired properties? The attribute
can represent various control goals, abstracted as a scalar
reward measuring the quality of generated images. The ma-
chine learning community has already taken steps to lever-
age reinforcement learning for enhancing text-to-image at-
tribute alignment [1, 6, 17], aligning with human/AI pref-
erence attributes [27], and subject-driven attributes [14].
There is also a training-free method for controlling motion
attributes [7]; however, it is only suitable for specific tasks
and requires careful design of the guidance function. In
practice, most attribute-based tasks still require end-to-end
fine-tuning.

Learning additional conditional controls for text-to-
image diffusion models has been explored. ControlNet [31]
introduces a trainable copy for each block in diffusion mod-
els to address the overfitting problem during fine-tuning,
although this approach is memory-inefficient for attribute
tasks. [30] proposes a reward classifier to guide generation;
however, this method makes a strong assumption about the
continuous reward random variable, specifically assuming a
Gaussian distribution for the reward. Therefore, designing
an efficient and expressive method is essential for handling
the attribute problem.

This paper introduces Target Attribute Diffusion Models
(TADM), a new adapter for text-to-image diffusion mod-
els. TADM comprises two key components: the attribute
carrier and decoupled attribute cross-attention, which inject
attribute information into the pre-trained diffusion models



while preserving the quality of the generated images. This
new adapter freezes the parameters of the original model
and trains only the parameters of the new modules. To
avoid introducing disruptive noise during the initial training
phase, the output of the decoupled attribute cross-attention
is connected to a close-to-zero initialized output layer, with
the weights progressively growing during training to main-
tain the high quality of the generated images.

There are two tiers on experiments. Experiment 1 con-
sists of a single prompt experiment on the color saturation
attribute. Experiment 2 extends by evaluating on multiple
prompts, and was conducted with three attributes: color
saturation, sharpness and human preference. In the color
saturation and sharpness experiments, TADM shows bet-
ter alignment compared to RCGDM [30], a baseline algo-
rithm. For human preference, it shows the limits of both
algorithms, where they cannot handle the complexity of hu-
man preference.

In summary, (1) we propose TADM, a new adapter for
diffusion models that incorporates real-valued conditions;
(2) we describe the attribute carrier, a new neural network
architecture that combines information from different sub-
spaces; and (3) we offer insights on the growth of norms
in adapter modules, which we solve by introducing norm

clipping.

2. Related Work
2.1. Diffusion Models

Text-to-Image Diffusion Models. Image diffusion mod-
els were introduced by [10, 22, 23]. The original diffu-
sion models perform denoising steps in the image space. To
address the computational cost, Rombach et al. [20] pro-
posed Latent Diffusion Models (LDM), which transfer the
denoising process into a latent space, significantly reduc-
ing computational requirements. SDXL [16] implements a
large-scale version of LDM. Instead of diffusing in the la-
tent space, Imagen [21] introduces a novel pyramid struc-
ture to directly perform denoising steps on pixels.

Controllable Diffusion Models. Dhariwal and Nichol
[4] introduce an additional classifier to guide the diffu-
sion steps, a method that outperforms BigGAN [3]. Ho
and Salimans [9] propose classifier-free diffusion guidance,
which eliminates the need for a separate classifier and sim-
plifies the training process for diffusion models. In prac-
tice, classifier-guidance is preferred for tasks requiring ad-
ditional conditioning. The works on reward-conditioned
generation via diffusion model (RCGDM) [30] introduce a
reward classifier to model the reward distribution. Motion-
guidance [7] proposes a training-free method that designs
a task-specific loss function and uses its gradient to guide
generation. The classifier-free method can also be applied
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to additional conditional information. ControlNet [31] is
designed to capture spatial information, including edges,
segmentation, and human poses, from reference images.
This method requires copying trainable modules for each
block of the Stable Diffusion Models [20]. Ip-Adapter [29]
and SSR-Encoder [32] leverage the pre-trained CLIP im-
age encoder [18] to extract features from reference images
and use decoupled cross-attention layers to guide genera-
tion based on these unique features. Instead of introducing
new parameters, RPO [14] provides controllable generation
for subject-driven tasks through preference-based reinforce-
ment learning.

2.2. Fine-Tuning Foundation Models

Low-Rank Adaptation (LoRA). Hu et al. [11] propose
the LoRA technique for fine-tuning large language models
to mitigate catastrophic forgetting. Based on the observa-
tion that language models operate within a low intrinsic-
dimensional subspace, LoRA alleviates overfitting by in-
troducing parameter offsets represented by low-rank matri-
ces. Additionally, LoRA addresses disruptive noise issues
by initializing parameters using a Gaussian distribution with
Zero mean.

3. Background

Diffusion Models. Diffusion models [10, 22, 24] are a
family of probabilistic models of the form pg(xo) =
| pg(x0.:7)dx1.7, where xi.r are noised latent vari-
ables of the same dimensionality as xXg ~ Pgaa(X0)-
The diffusion process is a Markov chain that gradu-
ally adds Gaussian noise to the input data xg according

to a variance schedule ; such that q(x; | x:—1) =
N(xi;v/1 = Bixi—1, B3¢I), and thus, q(x; | xg) =

N (%45 Jarxo, (1 — a)I), where a; = [[i_,(1 — B).
Therefore, x; can be rewritten as x; = \/a;xo ++/1 — e,
where € ~ AN(0,I). A variational Markov chain in the
reverse direction is parameterized with pg(x¢—1 | X¢) =

N (Xt—l; ﬁ (Xt - \/ftiatezﬁ(xt)),ﬂﬂ
is trained by a re-weighted evidence lower bound (ELBO):

and €4 (xy)

ey

min Fx.r.c [w(t)llep(x:) — €3],

where t ~ U{1,...,T}. In practice, w(t) can be simplified
as 1 according to [10, 23].

Classifier-free Guidance. The classifier free guidance [9,
15] approximates samples from the distribution

q(x¢ | ) o< q(xt)q°(c | x¢),

where s > 1 is the guidance scale. The score function of
the implicit classifier [4], ¢(c | x;), can be represented as
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Figure 1. The model architecture of TADM. Only the new modules
(indicated by the flame icon) are trained while the pretrained UNet
modules are frozen.

Vi, logq(c | x;) = Vx, logq(x; | ¢) — Vy, log q(x¢)
X 6¢(Xt7 C) - €¢(Xt7 (Z))a

where €4 is the learned diffusion models and €g(x¢, ) =
€4(%;). During sampling, the denoised step is extrapolated
in the direction of €4 (x¢, c) and away from €¢(x;) as fol-
lows:

€p(Xt,¢) = €p(x¢) + 5 (€p(xt,€) — €g(x1))  (2)

4. Method

A Target Attribute Diffusion Model (TADM) is an archi-
tecture that enables large pretrained text-to-image diffusion
models to incorporate scalar conditions and Figure 1 shows
the overall architecture of TADM. In Section 4.1, we first in-
troduce the new architecture’s core component, the attribute
carrier. Next, we describe how to apply this structure using
attribute-decoupled cross-attention within pretrained diffu-
sion models, such as Stable Diffusion [20], in Section 4.2.
Finally, in Section 4.3, we provide details on the training
process for TADM.

4.1. Attribute Carrier

An attribute carrier can be described as a mapping from
a query and an attribute to a latent output, where both the
query and attribute are tensors (Figure 2). In practice, the
input is represented as a query Q € R**? and an attribute
A € R? Similar to [26], we compute the scaled dot-
product of the query with the attribute and apply the sig-
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T

moid function to obtain the update gate:
G = Sigmoid (Q 3)

i)

The new query, which incorporates the attribute informa-
tion, is denoted as Q' and is defined through broadcast
element-wise addition:

Q' =Q+A.

The gate function is defined as a convex combination of the
new query and the original query using the update gate:

“)

Gate(Q,Q,G) =GoQ +(1-G)oQ, ()

where ® denotes element-wise multiplication.

Intuitively, the elements in the update gate G are inde-
pendent Bernoulli-distributed random variables. The update
gate only updates to the new query if the original query is
highly correlated with the attribute tensor. Formally, the at-
tribute carrier can be written as

T

A
AttributeCarrier(Q, A) := Sigmoid ( Q

Vd
+ (1 — Sigmoid (Q\/AZZ )) ©Q

4.2. Attribute Carrier for Diffusion Models

)@<Q+A>

T

(6)

To incorporate the attribute carrier into diffusion models,
we design a simple architecture called the mix encoder (Fig-
ure 3). The feed forward network maps the target attribute
from R to a high-dimensional space R”, and we denote
the attribute embedding as A € RP. The text embedding,
c € REXde serves as the query feature. The mix-up em-
bedding is then represented as:

¢’ = AttributeCarrier(cW, AW 5 ), (7
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where W, € R%*4 and W, € R%a*d  These matri-
ces project tensors from two different spaces into the same
subspace. Consequently, the output ¢’ is a text embedding
that incorporates the target attribute information, and this
mix-up embedding is fed into the models. The decoupled
attribute cross-attention layers process this new embedding
tensor. Figure 4 illustrates the mechanism of the decou-
pled attribute cross-attention layer. Mathematically, given a
query z, a text embedding ¢, and a mix-up embedding c’,
the output of the decoupled attribute cross-attention layer is

defined as:
) v
QK'’

v/,

)

where Q = zW,, K = cW;, V =cW
K =W,V =W/,

T

QK
vy,

7z := W Softmax (

+X - W, Softmax ( ®)

and dy, is the inner dimension of the cross-attention layers.
For simplicity, we share the same inner dimension with the
pretrained cross-attention layers. To ensure the model re-
tains its ability to generate text-to-image-aligned images,
we freeze the parameters of the pretrained cross-attention
layers, making only the matrices W}, W/, and W/, train-
able.

While ¢’ serves to incorporate attribute information to-
wards the image generation process, it should not cause
catastrophic forgetting. Therefore, the outputs from the
attribute cross-attention layers are clipped such that their
norms cannot exceed a predefined value, which is set as a
hyperparameter.

4.3. Training

To address the potential influence of disruptive noise on the
hidden states of the cross-attention layers, we initialize W,
with values close to zero to ensure that minimal noise is
added to the features at the start of fine-tuning. During
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Figure 4. Overview of decoupled attribute cross attention layer.
Only the module with the flame icon will be trained.

training, we use a dataset comprising image-text-attribute

) ) N
pairs, i.e., D = (x(()z),c(z), a(l))izl, and employ the same
loss function as standard diffusion models:

£(0) = Expoact |lleo(xica)—€lP] . ©)

Additionally, we randomly drop attributes and prompts
during fine-tuning to enable the learned model to perform
classifier-free guidance:

€o(x¢,c,a) = €g(x¢) + s (€a(xy,c,a) — eg(xy)). (10)

5. Experiments

This section will demonstrate the relative performance be-
tween our method (TADM) and reward-conditioned gener-
ation via diffusion model (RCGDM) by Yuan et al. [30].
There will be four sets of experiments: Experiment 1 evalu-
ates color saturation on a single prompt. Experiment 2 eval-
uates with multiple prompts on three attributes: (a) color
saturation, (b) sharpness, and (c) human preference.
Experiment 1 is meant to demonstrate the capabilities of
TADM on a simpler task where it is finetuned and tested on
a single prompt and attribute. Experiment 2 is intended to
show generalization toward multiple prompts and multiple
attributes, which is a significantly more difficult task.

5.1. Attribute Measures

The experiments use three attributes: color saturation,
sharpness and human preference. Color saturation and
sharpness attribute measures can be mathematically de-
fined. Let x be an input image, and can be decomposed into
its corresponding RGB channels zr, ¢, xp. Color satura-
tion, denoted by f, is

fe(z) =1 —min(p(zr,zc), p(zc,7B), p(TR, TB))

Y



Figure 5. Example images with different color saturations, where
the f. of the left image is 0.21 while the f. of the right image is
0.68 [28].

where p is the Pearson correlation coefficient between the
two channels over the pixels. Intuitively, if the RGB chan-
nels are perfectly positively correlated, i.e. p(a,b) = 1 for
all pairs of channels a, b, this implies that all channels are
of the same pixel values hence it must be grayscale. There-
fore, this leads to f. = 0. On the other hand, if there is a
pair that is not correlated or negatively correlated, this leads
to a small p which means f,. will be large. Note that a high
fe does not necessarily mean that it is colorful, but could be
monochromatic with one particular intense shade of color.
Two example images are shown in Figure 5.

Sharpness f is defined to be the average central differ-
ence of all pixels of an image converted to grayscale. This
is implemented using NumPy’s gradient function [25].
Intuitively, this measures the average rate of change in all
local, spatial regions of an image, which can determine how
sharp or blurry the image is.

The measure of human preference f, comes from a pre-
trained ImageReward model by Xu et al. [28]. It was trained
with a preference learning objective, and when given an im-
age, it can produce a numeric score.

5.2. Experiment Configurations

Both methods use Stable Diffusion 2.1 [20] as the base
model. TADM requires finetuning of the new modules,
while RCGDM needs to train a classifier to predict an at-
tribute of an input image. To achieve this, we use the Cats
Vs. Dogs dataset [5] for Experiment 1, and the ImageRe-
ward dataset called ImageRewardDB 8K by [28] for Exper-
iment 2. The dataset is augmented such that it becomes a
set of tuples containing the image, prompt, and the corre-
sponding attribute value.

The datasets include some minor editing processes
to improve the diversity of attributes. To improve the
diversity of f., we randomly enhance the color satu-
ration of the sampled images. Specifically, we use
ImageEnhance.Color from Python Imaging Library
(PIL) [2] with the enhancement factor selected uniformly
between 1 and 2. To improve the diversity of fs, we use

6956

—— TADM (Ours)
RCGDM
Ideal

0.225 A

0.200 A

0.175 A

0.150 A

0.125 A

Actual color score

0.100 A

0.075 A

0.050

0.14 0.16 0.18 0.20

Target color score

0.10 0.12

Figure 6. Experiment 1: Alignment of color saturation attribute
for TADM and RCGDM.

ImageFilter.GaussianBlur from PIL with the ra-
dius of blur selected from an Exponential distribution with
a scale of 0.6. We do not edit images for the human prefer-
ence attribute.

The ImageReward dataset consists of 8,000 prompts [28]
that will be used for training. The prompts used for valida-
tion and testing are manually constructed and listed in Table
1. At each validation and testing step, four images are gen-
erated for each target attribute value. Experiment 1 does not
have validation since there is a single prompt experiment.

In Experiment 1, the target color saturation attribute val-
ues are 0.1, 0.12, 0.14, 0.16, 0.18, and 0.2 which are chosen
based on the distribution of attribute values for cats in the
dataset. The target values are chosen separately for each at-
tribute in Experiment 2. For the color saturation attribute,
the targets are 0.3, 0.4, 0.5, and 0.6. For the sharpness at-
tribute, the targets are 0.8, 1.0, 1.2, and 1.4. For the human
preference attribute, the targets are 0.8, 0.9, 1.0, and 1.1.

Recall that in Section 4.2, the attribute cross-attention
outputs are clipped to a predefined value. The maximum
norm is set to 0.1 for Experiment 1, and 0.2 for all models in
Experiment 2. For RCGDM, we used the default classifier
architecture to learn the mapping from image to attribute
values as provided in their GitHub page [30]. The guidance
strength (for the gradient flows) is set to 200.

5.3. Experimental Results

Experimental data contains the degree of alignment be-
tween the given target attribute value and the actual attribute
value obtained from the resultant generated image. In gen-
eral, the ideal trend is where the actual attribute value is
equal to the target attribute value, forming a perfect diago-
nal y = z graph.

However, it is important to note that it is a very difficult



Table 1. Validation and testing prompts for all attributes.

Validation prompts

Testing prompts

An astronaut with a galaxy background
A retro vintage bar
Roman soldiers at the Siege of Carthage
A white unicorn in a fantasy meadow
A realistic painting of a Japanese village

A scuba diver in the ocean
A cozy living room of wooden cabin
World war 2 soldiers in the trenches
A pegasus flying over grassland

A hyperrealistic painting of a medieval city

Figure 7. Sample cat images from TADM (left) and RCGDM
(right).

task for any generative model to perfectly align to the diag-
onal line. This is essentially an interpolation task where
the output space contains images. A more extensive re-
lated discussion can be found in Section 6.1. As such, one
should primarily treat the diagonal line as a guide for the
ratio of the y-axis scale to the x-axis scale, and not exclu-
sively gauge the performance relative to that diagonal line
but also to another baseline algorithm.

Experiment 1 The prompt is fixed to be “A photo of a
cat”. To effectively illustrate the relative improvement of
TADM over RCGDM, we summarize them by showing the
mean color saturation score (over 20 images) and its corre-
sponding standard error in Figure 6. We can see that TADM
aligns significantly better and is more monotonically in-
creasing than RCGDM.

Sample generated cat images can be viewed in Figure 7.
One image is sampled per target value for each method. In
general, TADM has slightly more distortion in its generated
images, resulting in a minor grainy texture. However, this
might be a natural artefact of guiding the denoising process
since TADM has a greater color diversity than RCGDM.

Experiment 2 Figure 8 shows the mean and standard er-
ror of all 20 images (5 prompts, 4 images per prompt) for
each target attribute value.
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In a multi-prompt experiment setting, the performance of
both methods is not as good as in Experiment 1. Neverthe-
less, in relative terms, TADM shows better alignment than
RCGDM in the color saturation experiments despite having
a slight bias towards higher color saturation than intended.
In the sharpness experiment, while TADM lies closer to the
ideal trend than RCGDM, both do not demonstrate much
variance across the target sharpness. As for the human pref-
erence attribute, TADM and RCGDM are generally moving
in the right direction, although there is a slight bias towards
lower scores. Also, there is a greater uncertainty here com-
pared to the other two attributes.

To concretely assess the generated images, Figures 9 and
10 show the images from TADM and RCGDM that best
align with the target color saturation values for a given
prompt. RCGDM has better color alignment than our
method, but notice that RCGDM varies the color satura-
tion by adding unnatural artefacts to boost color saturation.
This is most noticeable in the rightmost image in Figure 10.
TADM, instead, boosts the colors mainly in the background
to vary the color saturation values, and in the rightmost im-
age of Figure 9, plausibly augments the colors of the flip-
pers and hands. In general, TADM preserves image quality
better while aligning the attributes.

Since the other two attributes have low variance with re-
spect to the target values, we instead compare the highest
attained values between TADM and RCGDM. Figure 11
shows the illustration for the sharpness attribute f,, and that
prompt was chosen because it has a noticeable difference
between TADM and RCGDM. The image from RCGDM
is arguably more aesthetic-looking but fails to produce a
sharper image. TADM was able to produce a sharper im-
age by adding rougher textures onto the dirt. As for human
preference, there is not much that is visually discernible in
terms of actual attribute values.

6. Discussions

This section highlights insights and analyses that extend be-
yond the tasks investigated in the experiments.

6.1. Relationship between Attribute and Prompt

Attributes and prompts provide the diffusion model with ad-
ditional context, reducing the search space. Textual prompts
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Figure 8. Experiment 2: Color saturation, sharpness, and human preference alignment results for TADM and RCGDM.

Figure 9. Sample TADM generated images for “A scuba diver
in the ocean” (color saturation attribute). From left to right, the
targets are 0.3, 0.4, 0.5, and 0.6 while the attained attribute values
are 0.195, 0.352, 0.419, and 0.621.

Figure 11. Sample TADM (left) and RCGDM (right) images for
“World war 2 soldiers in the trenches”. Both images are selected
such that they have the highest f, across all images for that prompt
(independent on the targets). The TADM image has fs of 1.558.
The RCGDM image has fs of 1.025.

man preference scores by removing subjects not mentioned
in the prompts.

In TADM, we offer a lightweight solution for adding
a numeric conditioning input by attaching a new module
to a pretrained Stable Diffusion model. As a result, the
model is likely to favour the prompt in the event of a contra-
diction since the norm of the attribute cross-attention out-
put is clipped but most parameters in the diffusion model
have been optimized towards text-image alignment tasks.
It might require a complete retraining of all parameters to-
wards this objective, but that is beyond the scope of our

Figure 10. Sample RCGDM generated images for “A scuba diver
in the ocean” (color saturation attribute). From left to right, the
targets are 0.3, 0.4, 0.5, and 0.6 while the attained attribute values
are 0.288, 0.324, 0.488, and 0.612.

provide a holistic and subjective desiderata of the generated
image while attribute values provide precise and quantifi-
able specifications of the generated image. Both inputs pro-
vide different types of control over the diffusion model, but
there could be unintended contradictory signals.

For example, consider when the prompt is “A colorful paper.
rainbow” but the color saturation attribute is set to 0. This ..
sends a contradictory message to the diffusion model and 6.2. Norm Clipping

the output would highly depend on the distribution of im-
ages that it was trained on.

As discussed in Section 4.2, the resultant attribute output
should have its norm clipping prior to the addition. Here,
we can verify the hypothesis that this clipping is in fact nec-
essary. Figure 12 shows the growth of attribute output norm
(orange) over the gradient steps. With norm clipping, the
maximum norm of the output is 0.4.

In terms of the effect of image generation, experiments

While this is an extreme example, this effect can be
prevalent in less well-defined attributes such as human pref-
erence. People may inherently dislike a particular subject
but it is highly associated with a subject found in the input
prompt. As a result, it is highly non-trivial to increase hu-
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Figure 12. Growth of attribute cross-attention norm relative to the
text cross-attention norm.

without a bounded norm always produce images that are
incomprehensible within a few hundred gradient steps. This
is likely the result of the attribute output greatly interfering
with the original text output.

An interesting perspective on norm clipping comes from
the lens of adversarial machine learning. Adversarial at-
tacks are typically limited by adversarial budgets [13], and
these budgets are typically small. Take the fast gradient sign
method by Goodfellow et al. [8] for example. The attack
simply involves an addition between an input and a spe-
cially crafted vector with a small norm.

In this paper, we leverage a similar principle to in-
duce an additional conditioning variable for an image gen-
eration task. The attribute cross-attention output, essen-
tially bounded by an e-ball, aims to perturb the text cross-
attention output such that it sufficiently influences the out-
come of the generated image without causing too much in-
ternal covariate shift [12].

6.3. Limitation and Future Works

The experiments were conducted on the ImageReward
dataset [28] which contains image-prompt-human rating
triplets. While this dataset was originally selected for hav-
ing human rating targets, it contains synthetic images gener-
ated by Stable Diffusion [28] with fairly unnatural prompts
and varying image quality. Future works should utilize a
more varied non-synthetic dataset for the purpose of align-
ing attributes with images and texts. In addition, due to our
limited resources, we are unable to perform a complete fine-
tuning of all parameters in the pretrained Stable Diffusion
model but that would be future work.

7. Conclusion

Diffusion models have been lacking fine-grained control on
attributes that can be numerically measured, and in ways
that textual prompts cannot precisely guide the image gen-
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eration process. Our work aims to rectify that shortcoming
and to generalize that control to any numeric attribute and
any textual prompt. By introspecting the current literature
on adapter modules, we identified gaps in different areas,
from the constraints on conditioning variables to the growth
of norms in the cross-attention outputs of adaptors mod-
ules. TADM has shown success in a single prompt, single
attribute experiment, and shown promise in the more gener-
alized case with multiple prompts on different attributes.
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