
Supplementary Material

Experimental Details
The training process was conducted on a single machine
equipped with a Quadro RTX 8000 GPU, and detailed train-
ing configurations are provided in the supplementary mate-
rial. For a fair evaluation, we used the official codes and
implementations provided on Hugging Face, following the
default parameter settings.

For DreamBooth [12], we set the batch size to 1 and
the learning rate to 5 × 10−6. For Custom Diffusion [9],
we used a batch size of 2 and a learning rate of 1 × 10−5.
For Textual Inversion [6], the learning rate was set to
5.0 × 10−4, with a batch size of 1 and gradient accumu-
lation steps of 4. For NeTI [1], we used a batch size of 2, a
learning rate of 1 × 10−3, and gradient accumulation steps
of 4. For AttnDreamBooth [11], Stage 1 used a learning
rate of 1×10−3 with a batch size of 8; Stage 2 used 2×10−5

with batch size 8; and Stage 3 used 2 × 10−6. The official
implementation used a batch size of 8 and gradient accumu-
lation steps of 1, but due to memory limitations, we used a
batch size of 4 and accumulation steps of 2 in Stage 3. For
DisenBooth [4], we used a learning rate of 1× 10−4 and a
batch size of 1. For Cones2 [10], the learning rate was set
to 5× 10−6 and the batch size to 1.

Comparison With Other Methods
Fine-grained Detail Preservation
NeTI, Textual Inversion and Custom Diffusion require less
storage compared to DreamBooth, making them more effi-
cient. However, in preserving fine-grained details, Dream-
Booth remains superior, as illustrated in Fig. 1. The re-
sults indicate that MINDiff enables the model to maintain
DreamBooth-level subject fidelity while ensuring that the
text prompt is faithfully reflected. This is evident from the
appearance of the backpack, the whale graphic on the can,
and the number ‘3’ on the clock, which demonstrate the su-
perior subject fidelity of our model.

Qualitative Results on SDXL
Figure 2 shows the results of LoRA-based [7] DreamBooth
using the Stable Diffusion XL 1.0 backbone. These results
demonstrate the compatibility of MINDiff with various ver-
sions of Stable Diffusion. While maintaining a similar level

of image fidelity, MINDiff achieves improved text align-
ment.

Mask-Based Editing Comparison
Table 1 summarizes key differences between MINDiff and
existing mask-based editing approaches [2, 3, 5, 8]. Prior
methods typically blend a reconstructed and an edited rep-
resentation using a spatial mask, following a formulation
such as A⊙ (1−m) +B⊙m, where A denotes the recon-
structed representation, B the edited representation, and m
is a binary mask indicating the target region for editing.

In contrast to blending-based approaches, MINDiff in-
troduces a structurally distinct mechanism by directly sub-
tracting a mask-weighted suppression term—derived from
an auxiliary attention branch—from the output of the main
attention operation. This enables spatial control over the
subject’s semantic influence, thereby mitigating overfitting
in personalization models.

PFB-Diff also incorporates masking within the cross-
attention mechanism. However, it applies masks to the at-
tention scores (i.e., QK⊤) to control the appearance of spe-
cific tokens. By contrast, MINDiff modulates the full at-
tention output (i.e., softmax(QK⊤)V ) across all channels,
providing a more direct and global form of suppression.
Clarifying mask application. As shown in Tab. 1, the
compared methods differ in where the mask is applied.
Although the table lists “Feature map” as the main mask
application level for PFB-Diff, it also performs pixel-
space blending in the early stages of the diffusion pro-
cess. DiffEdit automatically generates a mask by compar-
ing noise predictions under different prompts, while MIN-
Diff derives its mask from the cross-attention map of the
subject token. PFB-Diff and our method share certain simi-
larities. Both operate across multiple levels of the architec-
ture, allowing for more seamless integration of mask-based
control.

Mask Analysis
Temporal Evolution of the Mask
To better illustrate the effect of Mask-Integrated Negative
Attention Diffusion (MINDiff), we visualize the generated
masks by dividing the denoising process into six stages in
Fig. 3. This mask represents the pre-inversion state. When
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Figure 1. Qualitative comparison of fine-grained detail preservation across personalization methods: DreamBooth, Custom Diffusion with
PPL, NeTI, Textual Inversion, and DreamBooth with MINDiff (ours). All images are generated using the same random seed for fair
comparison. NeTI uses the highest truncation value, and MINDiff applies a suppression scale of λ = 0.6. Results show that MINDiff
retains DreamBooth-level visual fidelity while improving text alignment, whereas other methods tend to distort subject identity. All results
are based on Stable Diffusion 1.4.

Table 1. Comparison With Mask-Based Editing Approaches

Method Application Level Mask Source Mechanism Hierarchical

Blended Diffusion Pixel User-provided Blending ✗
Blended Latent Diffusion Latent User-provided Blending ✗
DiffEdit Latent Auto Blending ✗
PFB-Diff Feature map User-provided Blending ✓
MINDiff Attention Auto Attention Suppression ✓

applying Negative Attention, this mask is inverted for Back-
ground Masking. This comparison demonstrates how the
suppression of subject influence evolves over time, ensur-
ing better alignment with the text prompt while reducing
overfitting.

Threshold Sensitivity

To analyze how different threshold values affect mask gen-
eration, we modify the threshold—initially set as the mean
attention value—by applying scaling factors ranging from
0.6 to 1.0. As shown in Fig. 4, this analysis demonstrates
how variations in the mask range influence the generated
results.



Figure 2. Qualitative results of MINDiff applied to LoRA-based DreamBooth using the Stable Diffusion XL 1.0 backbone. The first
column shows input images, and the remaining columns show generated results conditioned on different text prompts. MINDiff maintains
subject fidelity while improving text alignment, demonstrating its applicability to LoRA-based model.

As the scale value decreases, the selected region be-
comes more similar to the input image, leading to an ex-
pansion of the similar area. At scale 0.7, a tray appears, and
at scale 0.6, a cup is generated, while these objects do not
emerge at other scales. When the extracted mask region ex-
pands and includes part of the background—such as at scale
0.6 and 0.7—the entire background tends to follow the input
image, even when it is not fully covered.

Distributional Evidence for the Need for Con-
trollability

Prior personalization methods typically report average
scores over evaluation sets to summarize subject fidelity and
text alignment. However, these scalar metrics do not reflect
the inherent variability introduced by different prompts,
subjects, and initial noise conditions. In Fig. 5, we visu-
alize the distribution of 3,000 samples used for quantitative
evaluation. This reveals considerable variability across con-



Figure 3. The mask comparison is presented by dividing the denoising process into six timesteps in MINDiff. The figure follows a left-
to-right flow, with arrows indicating the progression of inference time. The text prompt used for this visualization is “a sks toy in a flower
garden”.

Figure 4. Mask generation results with varying threshold values. This is the result of scaling the initial threshold from 0.6 to 1.0 All results
are generated with the same seed.

ditions, even under a fixed model, highlighting the impor-
tance of user-controllable mechanisms to steer generation
toward desired outcomes.

Comparison of Attention: Full vs. Subject
Prompt

We visualize cross-attention outputs at three denoising
steps—5, 25, and 45—to compare attention behavior be-

tween the full prompt and the isolated subject prompt. As
shown in Figure 6, the left panel corresponds to the full
prompt (“a sks dog in the snow”), while the right panel
shows the attention for the subject-only prompt (“a sks
dog”). Although the attention values differ, the spatial
layouts remain largely aligned across steps. This demon-
strates that the subtraction-based suppression mechanism
preserves the latent structure while effectively removing the
subject’s influence from undesired regions.



Figure 5. 2D KDE visualization of CLIP-T vs. CLIP-I (left) and CLIP-T vs. DINO (right) scores over the same 3,000 evaluation samples
used in quantitative experiments. These results highlight the inherent trade-off variation across subject–prompt pairs, and demonstrate that
MINDiff enables directional control over this distribution via scale adjustment.

Failure Cases from Improper Lambda Tuning
Figure 7 shows failure cases observed when the λ value is
not appropriately set. When λ is insufficient, the model
tends to disregard the text prompt, often omitting key el-
ements such as the “blue house” in the background. Con-
versely, when λ is excessively high, the model prioritizes
text alignment at the cost of subject fidelity, occasionally
failing to generate the target subject entirely. These results
highlight the importance of selecting an appropriate λ to
balance subject preservation and prompt adherence.

Inference Latency and Memory Usage
We evaluated the inference performance of MINDiff on a
system equipped with a Quadro RTX 8000 GPU and Sta-
ble Diffusion 1.4 (fp16). As shown in Tab. 2, MINDiff
introduces only a marginal overhead compared to vanilla
DreamBooth. The average GPU inference latency in-
creased slightly, from 3055.71 ms to 3209.44 ms, while
peak memory usage remained nearly unchanged (3269.06
MB vs. 3271.56 MB). Furthermore, as summarized in
Tab. 3, both latency and throughput across varying batch
sizes (1–8) show minimal differences between DreamBooth
and DreamBooth with MINDiff. These results indicate
that MINDiff adds negligible computational overhead and
scales efficiently under increased workloads.

Additional Generation Results
Figure 8 shows the results of artistic rendering, where MIN-
Diff effectively captures and represents the essence of each
artistic style. Figure 9 showcases diverse icon designs,
demonstrating the model’s ability to generate stylistically

diverse outputs.



Figure 6. Cross-attention maps extracted at different denoising steps (5, 25, and 45 from top to bottom). The left column shows attention
from the full prompt (“a sks dog in the snow”), and the right column corresponds to the subject-only prompt (“a sks dog”). While the at-
tention values differ, the spatial layouts remain largely consistent, supporting the validity of our subtraction-based suppression mechanism.



Figure 7. Failure cases observed with different λ values. Each row is generated using the same seed. The text prompt used is “a sks
class with a blue house in the background”, where class represents the broader category to which the subject belongs. Some images fail to
generate the subject, while others do not faithfully incorporate the text prompt, highlighting the challenge of selecting an appropriate λ.

Table 2. Inference latency and peak GPU memory usage (batch size = 1, repeat = 30)

Metric DreamBooth DreamBooth w/ MINDiff

Inference latency (ms, CPU) 3030.23 3181.53
Inference latency (ms, GPU) 3055.71 3209.44
Peak GPU memory (MB) 3269.06 3271.56

Table 3. Per-image inference latency across different batch sizes (ms)

Batch Size DreamBooth DreamBooth w/ MINDiff

1 3061.46 3137.04
2 2694.44 2748.96
4 2426.00 2474.99
8 2301.62 2358.18



Figure 8. Artistic style generation using MINDiff. The model successfully generates images in diverse artistic styles, including Van Gogh,
Impressionism, Michelangelo, Pixel Art, Andy Warhol, and Neoclassicism.

Figure 9. Icon generation using MINDiff.
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