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Abstract

The PHAROS-AFE-AIMI Workshop focuses on the appli-
cation of trustworthy Al to medical imaging. It advances
the AI-MIA Workshop series composed of 4 Workshops in
2021-2024, linking it to the Pharos Al Factory and specif-
ically to its Healthcare vertical. Specific technologies are
developed which target explainability, fairness, regulariza-
tion, continual learning and domain shift analysis. Various
medical imaging problems are tackled, including lung dis-
ease, cancer diagnosis, MRI, CT scan semantic segmenta-
tion and classification. Moreover, a competition was orga-
nized, comprising two tracks: (i) Multi-Source COVID-19
Detection Challenge, in which optimal systems were tar-
geted that generalize across acquisition/site variations, (ii)
Fair Disease Diagnosis Challenge, targeting CT scan clas-
sification to Healthy, Adenocarcinoma, Squamous Cell Car-
cinoma, or COVID-19, both in male and female categories.
A baseline system has been developed employing a unified
3D convolutional encoder with sequence (RNN) aggrega-
tion for volumetric context, trained with standardized pre-
processing and augmentation.

1. Introduction

Medical image analysis underpins modern diagnostic, prog-
nostic, and therapeutic decision making across a broad
spectrum of diseases. High-resolution three—dimensional
(3D) chest computed tomography (CT) is central for char-
acterizing pulmonary infections (e.g., COVID-19) and tho-
racic malignancies (e.g., adenocarcinoma, squamous cell
carcinoma), yet routine clinical assessment remains la-
bor—intensive, subject to inter—/intra—observer variability,
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and challenged by heterogeneous acquisition protocols
across institutions. Deep learning (DL) approaches have
demonstrated substantial gains in sensitivity, specificity,
and multi—class discrimination by leveraging large—scale
annotated datasets and representation learning. However,
translating these advances into trustworthy, equitable, and
generalizable clinical systems requires addressing persis-
tent gaps in (1) robustness to domain shift (scanner mod-
els, reconstruction kernels, demographic and epidemiologi-
cal variations), (2) fairness across patient subgroups, (3) ex-
plainability and human—centered transparency, and (4) scal-
able continual adaptation as data distributions evolve.

Recent regulatory and infrastructure developments, in-
cluding the emerging European Health Data Space and the
EU AI Act, emphasize requirements for transparency, bias
monitoring, traceability, and post—deployment governance
of high-impact AI systems. The PHAROS Al Factory',
one of the first seven Al Factories funded by the European
Union, embeds these priorities, targeting an applied ecosys-
tem in which research outputs boost innovation, whilst
ensuring reproducibility, accountability, and citizen trust.
Within this context, the PHAROS Adaptation, Fairness, Ex-
plainability in AT Medical Imaging (PHAROS-AFE-AIMI)
Workshop advances the AI-MIA series (ICCV 2021 [8],
ECCV 2022 [11], ICASSP 2023 [10] and CVPR 2024 [13]),
opening pathways for the transparent integration of Genera-
tive Al and multi-modal Large Language models (M-LLMs,
foundation models) into clinical imaging workflows.

In addition, we have recently developed a combined seg-
mentation and classification approach for 3-D chest CT
scans, particularly focusing on Covid-19 detection [14].
Our approach includes vision-language models that seg-
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Figure 1. Data samples in Multi-Source COVID-19 Detection Challenge: 3-D scan length histogram

ment the CT scans, followed by a deep neural architec-
ture, named RACNet [9], performing the classification task.
This architecture can be used in various applications related
to concept detection and relevant classification of images
and videos [18], [1]. Segment Anything Model (SAM)
and Contrastive Language-Image Pre-Training (CLIP) are
two exemplary Vision Foundation Models (VFMs) that
have showcased exceptional capabilities in segmentation
and zero-shot recognition, respectively. SAM, a prompt-
driven segmentation model, excels across diverse domains.
SAM has been trained on an extensive dataset of over one
billion masks, making it highly adaptable to a wide range
of downstream tasks through interactive prompts. It can
operate in two distinct modes: segment everything mode
and promptable segmentation mode. In our approach, we
employ both modes to achieve optimal segmentation re-
sults. SAM has shown impressive results in a broad range
of tasks for natural images, but its performance has not
been state-of-the-art when being directly applied to medical
imaging. Conversely, CLIP’s training with millions of text-
image pairs has endowed it with an unprecedented ability in
zero-shot visual recognition.

The developed SAM2CLIP2SAM approach provides CT
scan segmentation, leveraging the strengths of both models.
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At first, SAM produces multiple part-based segmentation
masks for each slice in the CT scan; then CLIP selects only
the masks that are associated with the regions of interest
(ROIs), i.e., the right and left lungs; finally SAM is given
these ROIs as prompts and generates the final segmenta-
tion mask for the lungs. The method accurately segments
the right and left lungs in CT scans, subsequently feeding
these segmented outputs into RACNet for classification of
COVID-19 and non-COVID-19 cases.

In the following we present the PHAROS AI Factory
framework (Section 2), the PHAROS-AFE-AIMI Compe-
tition framework (Section 3), the related databases (Section
4), the baseline configuration (Section 5), the experimental
results (Section 6) and the future work plan (Section 7).

2. The Pharos Al Factory

The European Union has recently announced the ’Europe:
Al Continent Plan’ including the following:

* Building a large-scale AI computing infrastructure (13 Al
Factories, 5 Al Gigafactories, 200b AI Apply Facility,
cloud & Al development act)

Increasing access to high-quality data (Data Union Strat-
egy, Data Labs across Al Factories)

Promoting Al in strategic sectors (Apply Al Strategy, Eu-



ropean Digital Innovation Hubs)

» Strengthening Al skills and talents (Educate, Train, At-
tract, Retain)

» Simplifying the implementation of the Al act.

Al Factories are dynamic ecosystems that build around
Al-optimized supercomputers, offering computing re-
sources and support services to the European industry, as
well as to the European scientific users for the development
of large Al models. The 13 currently approved EU Al Fac-
tories are shown in Figure 1.

The Pharos Al Factory capitalizes on existing invest-
ments in the area of HPC, Al and data centres to empower
on start-ups and SMEs. It prioritizes three verticals, i.e.,
application fields: Health & Life Sciences, Culture & Lan-
guage and Sustainability (Energy - Environment - Climate).
The services, as well as supporting actions of PHAROS Al
Factory to users & developers, are shown in Figure 2.

The Health & Life Sciences vertical targets creating Al
models for the analysis of multi-modal biomedical data,
domain-specific AI models to support targeted healthcare
solutions, Al predictive models for disease progression,
including segmentation, classification, generalization, fair
and explainable decision making. The PHAROS-AFE-
AIMI Workshop and Competition enrich the perfromed re-
search in these directions.

3. Competition Overview

A variety of technologies have been developed for early
diagnosis of COVID-19 based on medical image analysis,
with special emphasis on 3D chest CT scans. Recent meth-
ods often employ combined segmentation and classifica-
tion strategies, targeting abnormalities such as consolida-
tion, ground-glass opacities, and interlobular septal thick-
ening primarily under pleura [20].

The 2025 PHAROS-AFE-AIMI Workshop continues the
tradition established by prior competitions, such as the
COV19D Competitions organized within the formerly or-
ganized workshops. To advance the community’s develop-
ment along the crucial dimensions of robustness and fair-
ness, this edition introduces two new competition tracks,
each employing standardized datasets and evaluation proto-
cols.

Multi-Source COVID-19 Detection Challenge. This
track provides annotated 3D chest CT volumes aggregated
from four distinct hospitals or medical centers, each identi-
fied by source labels (0-3). Each CT scan has been metic-
ulously manually annotated as either COVID-19 positive
or non-COVID-19. The aggregated dataset is partitioned
into training, validation, and test sets. Participants receive
access to the annotated training and validation datasets to
develop AI/ML/DL models capable of robust and accurate
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COVID-19 prediction. The primary challenge and goal
of this competition track is achieving robust generalisa-
tion across different acquisition conditions, scanner models,
imaging protocols, and institutional contexts inherent to the
provided datasets. Consequently, participants are encour-
aged to develop models that generalise well, delivering uni-
formly strong performance across diverse sites rather than
overfitting to particular datasets. Performance evaluation
is rigorously conducted using a per-source macro F1 score,
which is computed independently for each hospital/medical
center source and subsequently averaged. This evaluation
protocol explicitly reveals each model’s cross-institutional
robustness, highlighting strengths and weaknesses across
distinct institutional conditions.

Fair Disease Diagnosis Challenge. This multi-class clas-
sification challenge encompasses four diagnostic classes:
Healthy, Adenocarcinoma, Squamous Cell Carcinoma, and
COVID-19. Each CT scan is accompanied by metadata
specifying patient sex (male/female). The dataset provided
is partitioned into clearly defined training, validation, and
test sets. Participants have access to the annotated training
and validation sets to develop robust AI/ML/DL classifica-
tion models. The central goal of this challenge is to ensure
fairness across gender groups in diagnostic outcomes. Fair-
ness is operationalised by calculating the macro F1 score
separately for each sex subgroup over the four diagnostic
categories and then averaging these gender-specific scores.
This evaluation framework aims explicitly to prevent mod-
els from optimizing performance disproportionately for ma-
jority or easier subgroups, highlighting and mitigating any
gender-related performance discrepancies. The resulting
fairness-oriented metric serves as a transparent, scalar indi-
cator of balanced and equitable clinical performance, pro-
moting fairness and reducing demographic biases in diag-
nostic accuracy.

4. Database Description

4.1. Multi-Source COVID-19 Detection Database

The database for the Multi-Source COVID-19 Detection
Challenge is based on the COV19-CT-DB [9] and contains
3-D chest CT scans, aggregated from four distinct hospi-
tals/medical centers, identified by source labels (0-3). The
database consists of 3,020 CT scans, of which 1,035 are
COVID-19 cases and 1,985 are non-COVID-19 cases. All
scans are anonymized and manually annotated to ensure
high-quality labels.

Table 1 summarises the distribution of scans across train-
ing, validation, and test partitions.

Each 3-D scan consists of a sequence of 2-D CT images,
ranging typically between 50 and 700 [2] slices per scan,
maintaining a consistent image resolution of 512 x 512 pix-
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Figure 2. Data samples in Multi-Source COVID-19 Detection Challenge: 3-D scan length histogram

els. Table 2 presents a summary of the main elements of
train and validation sets in Multi-Source COVID-19 Detec-
tion Challenge.

Table 1. Data samples in each Set in Multi-Source COVID-19
Detection Challenge

[ Set [ COVID-19 [ Non-COVID-19 | Total |
Train 564 660 1,224
Validation 128 180 308

[ Total | 692 ] 840 [ 1532 |

Table 2. Data samples in Multi-Source COVID-19 Detection Chal-
lenge : main elements

Values
1,035 COVID
1,985 non-COVID
424,273 COVID
1,098,238 non-COVID
50 - 700
512 x 512

Elements

number of 3-D CT scans

number of 2-D images

number of images in scan series
size of images
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4.2, Fair Disease Diagnosis Database

The Fair Disease Diagnosis Challenge dataset comprises
3-D chest CT scans annotated into four diagnostic cate-
gories: Healthy (normal), Adenocarcinoma (A), Squamous
Cell Carcinoma (G), and COVID-19. Each scan includes
metadata specifying patient sex (male/female). The dataset
consists of 1,254 CT scans, divided into clearly defined
training, validation, and test partitions.

Table 3 summarizes the detailed categorical distribution
across train and validation partitions.

Similarly, each 3-D scan in this dataset includes between
50 and 700 slices per scan, with an image resolution of
512 x 512 pixels. The provided demographic metadata
enables comprehensive fairness assessments across gender
groups.

Figure 3 analyzes the length of the CT scan series, pre-
senting their histogram. This shows the differences regard-
ing the length of 3-D CT scans in Data samples in Multi-
Source COVID-19 Detection Challenge; these are caused
by various reasons, including the requested resolution anal-
ysis, or the specific features of the used equipment.

Figure 4 shows a series of slices from a COVID-19 case,
Figure 5 shows a series of slices from a normal case, Fig-
ure 6 shows a series of slices from an adenocarcinoma case



Table 3. Data samples in each Set in Fair Disease Diagnosis Challenge

Set Sex Healthy | Adenocarcinoma | Squamous Cell | COVID-19
Train Female 100 125 5 100
Male 100 125 79 100
S Female 20 25 13 20
Validation | “ypte | 20 25 12 20
Total Female 120 150 18 120
Male 120 150 91 120

CT-scan lengths

Frequency (%)

100

200

300 400 500

600

700

Figure 3. Data samples in Multi-Source COVID-19 Detection
Challenge: 3-D scan length histogram

and Figure 7 shows a series of slices from a squamous cell
carcinoma case.

Other database that we have considered was the Lung-
PET-CT-Dx [16] database, comprising CT and PET-CT DI-
COM images of lung cancer subjects, including XML an-
notations indicating tumor locations with bounding boxes.
The dataset includes patients retrospectively acquired who
underwent standard-of-care lung biopsy and PET/CT scans
due to suspected lung cancer. Patients are categorized based
on tissue histopathological diagnosis into Adenocarcinoma
(names/IDs containing *A’), Small Cell Carcinoma (’B’),
Large Cell Carcinoma ("E’), and Squamous Cell Carcinoma
(’G’). Images are provided in mediastinum (window width,
350 HU; level, 40 HU) and lung (window width, 1,400 HU;
level, =700 HU) settings. Reconstructions include 2mm-
slice thickness with CT slice intervals varying from 0.625
mm to 5 mm, encompassing plain, contrast-enhanced, and
3D reconstruction scanning modes.

5. The baseline configurations

5.1. Multi-Source COVID-19 Detection & Fair Dis-
ease Diagnosis baselines

The baseline architecture adopted for both the Multi-Source
COVID-19 Detection Challenge and the Fair Disease Diag-
nosis Challenge is a CNN-RNN architecture [3, 7, 9, 12].
Each 3-D CT scan has been padded to achieve a uni-
form length ¢, ensuring all scans consistently contain ex-
actly t slices. The entire unsegmented sequence [19] of 2-
D slices from each CT scan is first processed through the
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SAM2CLIP2SAM method for segmentation purposes. It is
then fed to the CNN component of the CNN-RNN classi-
fier. This CNN component performs localized feature ex-
traction on a slice-by-slice basis, emphasizing relevant fea-
tures primarily from lung regions. This localized analysis
mirrors expert medical annotation methods, capturing diag-
nostic features throughout the complete 3-D scan series.

Following this, the RNN component sequentially ana-
lyzes the CNN-generated features from slice O to slice t — 1,
effectively capturing the volumetric context across the scan.
The outputs from the RNN are then passed to a Fully Con-
nected (FC) layer, and finally to an output layer employing a
softmax activation function to produce the classification re-
sults. To mitigate overfitting and enhance generalization, a
Dropout layer is integrated immediately before the FC layer.

For the Multi-Source COVID-19 Detection Challenge,
the output layer consists of two units representing the binary
COVID-19 classification (COVID vs. Non-COVID). This
binary classification design directly corresponds to clini-
cal practice, distinguishing positive COVID-19 cases from
other pulmonary conditions and healthy states. We trained
the baseline with a source-wise Loss Averaging - a Domain-
Balanced Loss. Instead of computing the loss over all sam-
ples jointly (which can bias learning toward sources with
more data) the method computes the loss separately for
each data source and then averages these losses. This en-
sures that each source contributes equally to the gradient
updates, promoting balanced performance across domains.
The CNN-RNN baseline emphasizes robust generalization
across diverse medical centers and scanner configurations
by effectively integrating localized and volumetric features
from heterogeneous sources.

In the Fair Disease Diagnosis Challenge, the output layer
comprises four units, each corresponding to one of the di-
agnostic categories: Healthy (normal), Adenocarcinoma,
Squamous Cell Carcinoma, and COVID-19. This multi-
class setup addresses the clinical requirement of discrim-
inating between multiple prevalent lung diseases. Simi-
larly as in the previous Challenge, we trained the baseline
with a source-wise Loss Averaging - a Domain-Balanced
Loss. Instead of computing the loss over all samples jointly
(which can bias learning toward the gender with more data)
the method computes the loss separately for each gender



Figure 5. Slices from a Normal case Fair Disease Diagnosis Challenge

Figure 7. Slices from a Squamous Cell Carcinoma case Fair Disease Diagnosis Challenge

and then averages these losses. Additionally, demographic
metadata (patient sex) is explicitly considered during the
evaluation stage. Specifically, the baseline model’s per-
formance is assessed separately across gender subgroups,
enabling detailed analysis of performance disparities. This
evaluation strategy aims to uncover potential biases and en-
sures equitable diagnostic accuracy, aligning model predic-
tions closely with fair and balanced clinical outcomes.
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5.2. Pre-Processing & Implementation Details

In the pre-processing stage, all 2-D CT slices were ex-
tracted from respective DICOM images. Next, voxel in-
tensity values were computed using a lung window with
a width of 350 Hounsfield units (HU) and a level of
—1150 HU, and subsequently normalized to the range [0, 1].
Data augmentation techniques were applied to enhance the
dataset’s variability and robustness, including random ro-
tation within the range [—10°,10°] and horizontal flipping
[6, 22]. These augmentations were specifically designed to



Table 4. Multi-Source COVID-19 Detection Challenge: Performance in terms of Macro F1 Score (in %);

’ Teams H Total \ Source 0 \ Source 1 \ Source 2 \ Source 3 ‘
ACVLABJ[15] || 77.6 94.2 74.2 51.2 90.9
FDVTS [21] 77.6 96.2 72.9 49.0 92.1

baseline 70.1 85.8 65.3 442 85.1

Table 5. Fair Disease Diagnosis Challenge: Performance in terms of Macro F1 Score (in %);

Teams H Total \ Female \ Male ‘
FDVTS [17] || 70.4 78.3 62.5
baseline 62.3 68.7 55.9

emphasize region-of-interest extraction, primarily focusing
on lung areas in the 2-D images.

Regarding the baseline model’s implementation, we uti-
lized the ResNet50 architecture as the CNN component.
Following this CNN backbone, we incorporated a global
average pooling layer, a batch normalization layer, and a
dropout layer with a keep probability of 0.8. For sequen-
tial modeling, a single unidirectional GRU RNN layer with
128 neurons was employed. Each input CT scan was re-
sized from the original dimensions of 512 x 512 X 3 to
224 x 224 x 3.

Training was conducted with a batch size of 5, mean-
ing each iteration processed five CT scans simultaneously,
and the sequence length ’t” was set to 700, corresponding to
the maximum number of slices across all scans. We adopted
the softmax cross-entropy loss function for both challenges.
The Adam optimizer was chosen with a learning rate of
10~*. All training processes were executed on a Tesla V100
GPU with 32GB memory, ensuring efficient model conver-
gence and performance.

For the Fair Disease Diagnosis Challenge, a detailed fair-
ness assessment was performed by evaluating predictions
separately for male and female subgroups, identifying and
addressing any potential performance imbalances.

6. Experimental Results

This section describes the results of the two Challenges, re-
porting the performance of the winning teams versus the
baseline configurations, taking into account that there ex-
ists only a single label for the whole CT scan and no labels
for each CT scan slice [9].

6.1. Evaluation of the developed Models

In the Multi-Source COVID-19 Detection Challenge, the
performance measure (P) is the average macro F1 score
achieved across all four sources:

(

3 i i
Flcovid + Flnoncovid

2
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In the Fair Disease Diagnosis Challenge, the perfor-
mance measure (P’) is the average of per-gender macro F1-
scores. To calculate this, one needs to first split the set by
gender (Subset A: all male samples; Subset B: all female
samples) and then compute the macro F1 on each. There-
fore, the performance measure is:

macro

lmacro
female

male

1

—(F

5 ( )
The macro F1 score is defined as the unweighted average

of the class-wise/label-wise F1-scores.

P = +F

6.2. Competition Results

Table 4 shows the performance of the best submission of the
two winning methods in the Multi-Source COVID-19 De-
tection Challenge, versus each other and versus the baseline
approach.

It can be seen that the two methods that achieved the
highest performance score achieved more than 10 % im-
proved performance over the baseline approach. However,
their performance varied between 50 % and 96 % across dif-
ferent data sources. This illustrates the need for continual
learning of the developed systems. Continual learning is an
issue which is further examined in papers of the PHAROS-
AFE-AIMI Workshop.

Table 5 shows the performance of the best submission
of the winning method in the Fair Disease Diagnosis Chal-
lenge versus the baseline one.

It can be seen that the method that achieved the highest
performance score achieved more than 12 % improved per-
formance over the baseline approach. However, its perfor-
mance differed by about 20 % between female and male pa-
tients. This illustrates the need for fairness of the developed
systems. Fairness is also an issue which is further examined
in papers of the PHAROS-AFE-AIMI Workshop.

7. Conclusions and Future Work

In this paper we presented the goals and results of the
PHAROS-AFE-AIMI Workshop and of the two Challenges



that it contained: the first on multi-source COVID-19 de-
tection and the second on fair disease ndiagnosis. We pro-
vided a short description of the PHAROS Al Factory and its
health & life sciences application domain, which constitutes
the framework in which the results of the PHAROS-AFE-
AIMI Workshop will be further examined and fertilized. We
presented the databases, extracts from which were used in
the two Workshop Challenges. We also presented the de-
veloped baseline approaches and their performance in the
Challenges.

We also provided a comparison of the performance of
the winning methods with the respective baselines, showing
that they outperformed the baselines in both Challenges by
more than 10-12 %.

These results illustrate the ability of the deep learning
and Al enabled methods to appropriately handle segmenta-
tion and classification problems in medical imaging. More-
over, they illustrate that Domain Adaptation and General-
ization [4] can be a valuable approach for tackling the di-
versity of datasets obtained across different hospitals and
medical centers; this should take place in parallel with ex-
plainability and fairness of the developed approaches. De-
ployment of a recently developed solution has been devel-
oped for user-friendly medical usage [5].
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