A. Diabetic Retinopathy Concept Creation

For creating images representing diagnostically relevant
concepts, we use the pixel-wise annotations of the FGADR
dataset to construct positive and negative concepts. An il-
lustration of concept overlap in the fundus images, motivat-
ing the need for a controlled creation pipeline, is provided
in Figure 8.

Figure 8. Concept entanglement diagram for FGADR dataset,
showcasing how often all concepts coincide in a single image.

First, we horizontally flip all left-eye images to ensure
consistent orientation across the dataset, so that all eyes ap-
pear as right-eye views. This will not introduce bias, as all
training images can be randomly flipped.

For creating backgrounds, we start with defining the set
of healthy images. We take all images that do not have any
lesion annotations. Then, a subjective visual assessment is
made to exclude healthy images with irregular patterns. Al-
though possibly introducing bias, this is done to ensure the
remaining candidates can serve as a background that does
not introduce much noise.

After these steps, we apply the concept creation pipeline
to create 128 positive and negative concept image pairs.
This was a trade-off decision: while more concepts would
always be preferable for creating stable LCRs, increasing
the number would require reusing source images more of-
ten, reducing variability across concept examples. Note that
the number of 128 could be sufficient, as natural images
only need a couple dozen images [15]. An example of such
a pair is shown in Figure 9.

Concept Source + Mask

Healthy Background

Negative Concept Combined Mask

Figure 9. Example of concept creation pipeline on the fundus im-
ages from the FGADR dataset for concept: Soft Exudates. Done
on non-preprocessed data for visualisation, as patches can be seen
more easily without correcting for colour.

Internal Consistency and Domain Robustness. We con-
ducted experiments to evaluate whether using multiple
source images per concept pair improves the quality of the
learnt LCRs. Results of these experiments are shown in
Figure 10. To this end, we measured the accuracy of the
internal DB of filter-CAVs, computed across all layers of a
ResNet50 trained on the APTOS dataset.

While high DB scores indicate that positive and negative
concept examples are well-separated in the latent space, this
alone does not confirm that the resulting LCRs are meaning-
ful. Rather, it provides a necessary, but not sufficient, con-
dition for their utility in LCRReg. If the concepts were not
consistently separable, the resulting DBs and CAVs would
be no more informative than random directions in the rep-
resentation space.

In addition, we evaluated the CAVs on a model trained
on the FGADR dataset, the same dataset from which the
concepts were derived. This experiment was conducted to
assess whether concept performance improves significantly
when evaluated in-domain. If performance on the FGADR-
trained model is not substantially higher than on a model
trained on APTOS, this suggests that the concepts are robust
to data shift, as their utility does not strongly depend on the
training domain of the model.

Results. We found that using only a single source image
per concept pair resulted in near-random DB scores, in-
dicating poor separability in the latent space. Increasing
the number of source images improved performance: using
five images led to substantially better results, and using ten
yielded further improvements. We did not extend beyond
ten images due to limited data availability and the need to
preserve variability across concept examples. DB accura-
cies were comparable between models trained on APTOS
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Figure 10. Illustrations of the internal coherence score per layer of a ResNet50 trained on APTOS. Filter-CAV was calculated using 128
images, and evaluated using 64 other images, using accuracy of the internal decision boundary. The train-test split was created using
different source images. (a) shows the relation between number of source images per concept example, while (b) depicts the effect of

changing the models’ training data.
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Figure 11. Performance averaged over 5 runs of various LCRReg
models, PCBM-h, and the vanilla model, assessed across multiple
values of psc. Models are using hyperparameters that are tuned
using Optuna, with the validation set being of similar distribution
as the training set.

and FGADR, suggesting that the learnt concepts are robust
to data shift and do not rely heavily on the training domain.

B. Ablations

In this Appendix, we report further results of ablations stud-
ies. In particular, Figure 12 and Figure 13 show additional
ablations on hyperparameters and training strategies on the
Elements dataset, discussed in Section 3.1. Table 2 shows
performance of LCRReg on different model architectures,
which is addressed in Section 3.2.3.

C. Robustness to Spurious Correlations

Figure 11 reports the results of the different models on the
APTOS dataset with the hyperparameters finetuned with
Optuna, commented in Section 3.2.1. Note that we also
provide the accuracy of PCBM, which is equal to PCBM-h
without residual fitting. However, this is not discussed in
the main section due to it not achieving performance sig-
nificantly different than random performance, and it is thus
not reported in Figure 6 in the Main Text.
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Figure 12. Results of hyperparameter grid search on the binary classification task (Elements dataset) using filter-CAV with cosine loss.
Each configuration was run five times with different train/validation splits. Blue lines: mean =+ std over all combinations of remaining
parameters. Orange lines: mean =+ std with best setting of other parameters per fixed value. (a) Weight of the LrcRrReq: i¢. (b) Starting

epoch: t. (c) Recomputation interval: I ...
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Figure 13. Comparison of different Static regularisation to both Dynamic regularisation, and 3—Stage Training, evaluating all approaches on
15 distinct train—test dataset pairs. The figure shows both the Balanced Accuracy (BA) of individual runs, and the total average. Statistical
comparison was done via pairwise t-testing. Comparison of Static regularisation vs. (a) Dynamic regularisation and vs. (b) 3-Stage
Training.

Table 2. Performance of Latent Concept Representation-based regularisation across different datasets and model architectures, trained and
evaluated on APTOS. Trained on a Spurious Dataset with psc = 1. Performance reported in terms of balanced accuracy. Parameter counts
(in millions) are shown in parentheses below model names.

Dataset Model ResNet18 ResNet152  DenseNet121 InceptionV3
(11.6 M) (60.2 M) B.0M) 23.9M)
Reverse Spurious  Vanilla 14.81 (9.87) 14.60 (9.76)  43.71 (13.10) 17.96 (4.32)
Regularised | 31.47 (15.55) 16.82 (16.07) 65.74 (11.83) 49.12 (6.27)
Base Vanilla 75.32(5.70)  84.81(6.16)  88.91 (4.15)  79.66 (6.16)
Regularised | 80.14 (5.72)  82.32(1.56) 8526 (242)  66.25 (9.80)
Spurious Vanilla 99.69 (0.23)  99.66 (0.26)  99.06 (0.50)  97.22 (1.47)
Regularised | 99.49 (0.30)  99.32(0.86)  93.78 (3.58)  80.49 (12.0)




