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Abstract

Machine vision systems are susceptible to laser flare, where
unwanted intense laser illumination blinds and distorts its
perception of the environment through oversaturation or
permanent damage to sensor pixels. We introduce NeuSee,
the first computational imaging framework for high-fidelity
sensor protection across the full visible spectrum. It jointly
learns a neural representation of a diffractive optical element
(DOE) and a frequency-space Mamba-GAN network for im-
age restoration. NeuSee system is adversarially trained
end-to-end on 100K unique images to suppress the peak
laser irradiance as high as 10° times the sensor saturation
threshold Iy, the point at which camera sensors may ex-
perience damage without the DOE. Our system leverages
heterogeneous data and model parallelism for distributed
computing, integrating hyperspectral information and mul-
tiple neural networks for realistic simulation and image
restoration. NeuSee takes into account open-world scenes
with dynamically varying laser wavelengths, intensities, and
positions, as well as lens flare effects, unknown ambient
lighting conditions, and sensor noises. It outperforms other
learned DOEs, achieving full-spectrum imaging and laser
suppression for the first time, with a 10.1% improvement in
restored image quality.

1. Introduction

Continuous advancements of laser technology have enabled
the ready availability of low-cost, compact, and powerful
lasers which, if misdirected toward an image sensor, may
cause objectionable dazzle (e.g., sensor saturation and lens
flare) or irreversible anomalies. As illustrated in Fig.1, lasers
can disrupt vision and mislead the tracking system of un-
manned aerial vehicles [1-3]. Adversarial laser attacks
against the sensor of autonomous or robotic vehicles have
been demonstrated to significantly compromise their safety
and reliability [4—6]. Lasers also present risks to sensors in
mixed reality devices (e.g., video see-through head-mounted
displays). These devices may advance the development of
eye protection goggles [7—10] by providing high-quality
imaging capability that may otherwise not be possible. They
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Laser Strengths and Sensor Damage Risks

Figure 1. Illustration of sensor damage risks under the laser illumi-
nation (row 1) and applications of sensor protection (row 2), which
includes mitigating disruption and improving vision performance of
autonomous vehicles, robots, consumer cameras, as well as mixed
reality devices for eye protection in scientific experiments, aviation,
medical treatment, entertainment laser shows, and more.

are crucial in scientific experiments, aviation [11], law en-
forcement, manufacturing [12], medical treatment [13], and
more. In addition, laser-induced damage to consumer cam-
era sensors has been reported during entertainment events,
such as laser shows [14].

The laser-induced saturation and damage of an imaging
sensor depend on both the sensor and the laser characteristics.
The damage thresholds of silicon-based imaging sensors are
typically six to nine orders of magnitude higher than their
saturation thresholds [15, 16]. To mitigate laser-related sen-
sor risks and image degradation, optical techniques such as
wavelength multiplexing [17, 18], non-linear optics [19, 20],
holographic coatings [21], liquid crystals [22, 23], meta-
materials [24, 25], integration time reduction [26], smoke
obscurants [27]. Learned diffractive optical elements (DOEs)
have also been explored, but their performance is typically
constrained by limited field-of-view or spectral bandwidth
[28-33]. None of these approaches has been found to si-
multaneously satisfy the desired bandwidth, response time,
dynamic range, stability, and image quality characteristics.

In this work, we present NeuSee, a computational imag-
ing framework that jointly learns a neural representation of a
diffractive optical element (DOE) and a Mamba-GAN-based
image restoration network operating in the frequency do-
main. NeuSee is trained end-to-end in an adversarial manner
on 100K unique images, enabling it to suppress peak laser



irradiance up to 109 times the sensor saturation threshold I,
a level that could otherwise cause sensor damage without
the use of a DOE. The framework comprises a learnable neu-
ral phase mask that attenuates laser light while preserving
the transmission of the background scene. It also features
a novel restoration network that corrects multiple image
degradations, such as inpainting the saturated area, reducing
image blur, and removing noise, resulting in a high-quality
image. The contributions are summarized as follows.

* We present the first framework that jointly learns a diffrac-
tive optical element (DOE) and image restoration to pro-
tect sensors from high-energy lasers across the full visible
spectrum.

The learned DOE achieves both high background-light
throughput and laser suppression. A neural DOE represen-
tation with state-space GAN restoration and a two-stage
learning strategy disentangles conflicting objectives.

We curate a 100K high-resolution dataset with a physics-
based synthesis pipeline, generating diverse training im-
ages across laser spectra, intensities, positions, ambient
illumination levels, and noise.

Our system outperforms existing sensor-protection DOEs
in laser suppression ratio, imaging spectrum, laser spectral
coverage, and image quality.

2. Related Work

End-to-End Learned Camera System. Computational imag-
ing and photography are emerging areas that focus on im-
proving and extending the capabilities of traditional imaging
and camera systems using optical and computational meth-
ods. By altering light transmission at the pupil plane using
an amplitude mask or a phase mask, the coded aperture
approach has been investigated in many applications, such
as coded exposure [34], achromatic imaging[35, 36], high
dynamic range [37, 38], lens glare suppression [39, 40], ex-
tended depth of field [41-43], light field imaging [44, 45],
lensless imaging [46], privacy-preserving imaging [47, 48],
granular imaging [49, 50], hyperspectral imaging [51, 52],
AR glasses [53—-55] and more. Instead of relying solely on
separately learned optics, recent advances in computational
imaging have embraced end-to-end optics learning [56-59],
where phase masks are co-optimized with image restoration
algorithms. This approach integrates differentiable simula-
tions of optical systems with task-driven neural reconstruc-
tion models, enabling greater adaptability and system-level
optimization. Unlike traditional designs that primarily target
optical aberrations in isolation, end-to-end methods con-
sider the full imaging pipeline, tailoring both optics and
algorithms to the specific task. The resulting phase masks
learn to encode latent image information into PSFs, which is
subsequently decoded through the reconstruction network.
Image Restoration. Learning a direct mapping from the
sensor image s to the background scene radiance b using
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DNN has been extensively studied for many low-level com-
puter vision tasks [60], including image deblurring, denois-
ing, deraining, dehazing, in- and outpainting, as low light,
and many computational imaging applications [29, 61-63].
Vision transformers [64—66] seek to capture long-range im-
age dependencies using self-attention mechanisms. Alter-
natively, the spatial gating unit [67] was introduced with
the MLP to achieve a performance comparable to that of
transformers [68]. Recent advances in state-space sequence
models (SSMs or Mamba) [69] also demonstrated strong
efficiency and effectiveness in vision tasks [70-72]. Addi-
tionally, changing the image basis through linear or non-
linear transforms to better suit the orthogonally precondi-
tioned optimizers was found to accelerate the convergence
and improve the performance of the DNNs. One notable
finding involves the use of FFT features to correct spectral
bias and improve the learning of high-frequency functions
from low dimension data [73-75]. Furthermore, by breaking
down a complicated task into subproblems and solving them
progressively, multistage and multiscale frameworks allow
supervision and feature fusion in multiple restoration stages
and multiple image scales[76, 77] and encourage the recov-
ery of image details. Embedding of kernel functions [78]
and image coordinates [79-81] into neural networks has also
been introduced, respectively, to utilize the knowledge of
system PSF and positional information of an image.

Generative models seek to learn the joint distribution
Pr(s,b), which allows for more accurate recovery of miss-
ing data such as image saturation. Unlike VAEs [82] and
flows [83], GANs do not rely on an explicit inference model.
Instead, they learn the target distribution from an input dis-
tribution by seeking a Nash equilibrium between a generator
and a discriminator through a minimax game. Diffusion
models [84, 85] learn the implicit latent structure of a dataset
by modeling the way in which data points diffuse through
the latent space. Generative methods face the performance
trillema [86] of sampling quality, diversity, and speed. GAN
models outperform many VAEs and flows in generating real-
istic looking images. While diffusion models can generate
high-quality images with improved sample diversity [87, 88],
their potential in real-time applications is limited due to the
high cost of iterative sampling. The single-step distilled
diffusion models remain underperforming in sample quality
compared to GANs [89, 90].

3. Image Formation Model

Physics-based modeling enables accurate characterization
of imaging systems and supports end-to-end optimization of
optical elements and restoration algorithms, with efficient
transfer from simulation to real data. We next outline an
image formation model based on wave propagation.
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Figure 2. The proposed NeuSee system is a jointly learned imaging framework designed to protect sensors from laser dazzle across the full
visible spectrum. Our system involves 1) A physics-based differentiable imaging pipeline. To achieve accurate simulation of diverse scene
and lasers, pre-trained hyperspectral (HSI) reconstruction net is used to transform each RGB radiance map to a 31-band HSI volume; 2)

UNet-based neural representation of the DOE (or phase mask)

; 3) A novel Mamba-GAN architecture for image restoration, which

makes use of image intensity and frequency information. The training of NeuSee includes two stages. Stage 1 trains the DOE jointly with
Mamba-GAN restoration with DOE loss and GAN loss. In Stage 2, the quality of the restored image is finetuned by frozen the DOE and

train the Mamba-GAN with reconstruction and GAN loss.

3.1. RGB to HSI Irradiance

While proven effective in other computational imaging tasks
[57, 58], ensuring continuous laser coverage is critical for
our application. Consequently, simulating point spread func-
tions (PSFs) and sensor responses using only three RGB
channels is insufficient. To overcome this limitation, and
given the scarcity of hyperspectral imaging (HSI) data, we
employ a pre-trained spectral reconstruction network, G,;
(MST++ Net [91]), to recover 31-channel scene irradiance
b(x,y, A) in the visible spectrum (400-700 nm) from RGB
ground-truth irradiance b(x,y, 3). This approach enables
us to leverage the broader availability of RGB ground-truth
datasets. The transformation is formulated as:

b)\(x7y?31) = GhSZ(b(x7ya3)) (D

3.2. Neural Representation of the DOE

In this study, the incident laser is characterized as a plane
wavefront at the entrance pupil. To achieve sensor protection,
we introduce a learnable diffractive optical element (DOE)
at the entrance pupil of the system, the height of which is

written as a mapping of the pupil Cartesian coordinates of
pupil plane (u, v) by a phase representation net G.p:

2)

here we use an 8-layer UNet as the phase representation net.
Assuming the DOE has a wavelength dependent refractive
index An(\), the phase distribution of the DOE is given by:

hpor(u,v) = Gyep(concat(u, v))

2;~An

3.3. System Point Spread Function

(A) - hpor(u,v) 3)

¢por(u,v) =

The spectral irradiance distribution in the focal plane (x, y)
is described by wavelength-dependent pupil function and
point spread function (PSF):

ikf e
Un(z,y,A) = e-)\if // A(u, v)et® ) etk @utyr)/f gy dy
)
(4a)
2
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Table 1. Physical Parameters

Parameter Symbol Value
Background wavelength Ab 400-700 nm
Laser central wavelength Al 400-700 nm
Effective focal length f 0.11m
Exposure time t 0.1 sec
Aperture diameter W, 11 mm
Quantum efficiency Q. 0.56
Sensor gain g 0.37
Full well capacity €sat 25500e™
Read noise (mean) L 390e™
Read noise (std.) o, 10.5e¢~
Dark current O¢ 0.002e~
Bit depth per channel bpc 16
Pupil pitch Au = Av 3.74 um
Sensor pitch Ax = Ay 2.9 um
Pupil resolution N, x N, 2160 x 2160
Sensor resolution Ny x Ny 2048 x 2048

where f is the focal length of the imaging lens, k = 27/
is the wave number, and the integration is made over the
interior of a circular aperture A(u,v) of radius R.

To accelerate the computation of Eq. 4, we make use
of the efficient Scaled Fresnel method [92] that relates the
Fourier transform of the field in the pupil with that at the
sensor planes when the two domains have different pitch of
the pixels. When a camera captures a scene with a strong
light source in presence, the resulting image may exhibit
lens flare artifacts that caused by light scattering. These
flares can manifest in various forms, such as halos, streaks,
color bleeding, and haze. They are typically caused by
dirt, scratches, windshield dents, grease, or smudges, or a
mixture of them. Inspired by previous work [93-95], we
also simulate these lens flare effects as shown in Fig. 4.

3.4. Sensor Image

Irradiance Distribution. A shift-invariant imaging system
integrates the radiance distribution over the solid angle that
is extended by the aperture through spatial convolution x, re-
sulting in an irradiance map in the image plane. It is assumed
that the background illumination has a visible wavelength
Ap and the laser has a narrow wavelength )\;. For the phase-
coded system, we represent the irradiance distributions in
the sensor plane of the background scene and a laser spot:

Iy(z,y,A) = FHF(br) - Un) - To(A) (52)
Ij(z,y,\) = 0(x — Aly, y — Aly) - PSF(z,y,\) - Ti(\)
(5b)

where by (z,y) is the ground truth radiance map of the back-
ground scene, T3, (A) is the simulated CIE daylight spectral
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Figure 3. Spectral profile of scene illumination and a red laser.

curve shown in Fig. 3, T}() represents the spectral profile
of the laser characterized by a Gaussian distribution centered
at the wavelength ); and having a full width at half maxi-
mum bandwidth AAgwpm = 10 nm.The laser is considered
a Dirac Delta function, which targets the sensor at a normal
7y = (ny, ny) with respect to the optical axis. Its footprint
shift on the focal plane is thus given by (Al,, Aly) = f - 7.
F and F~! represents respectively the Fourier and its in-
verse transform, and §(-) represents the Dirac delta function,
where we assume the values of by (, y) are normalized to the
range [0,1]. By replacing the coded PSF h with the uncoded
PSF hy in Eq.5, the irradiance maps of the background scene
and the laser are defined as Ijy and [;g respectively for an
unprotected system.

Sensor Saturation. For a given wavelength, the irradiance
value that saturates a sensor is expressed as:

h-c
Nt (A2)2- Q.

where egat, Qc, and Ax are respectively the full well ca-
pacity, quantum efficiency, and pixel pitch of the sensor,
h = 6.63-1073* [J - ] is Plank’s constant, ¢ = 3 - 10%
[m/s] is the speed of light in vacuum, and ¢ is the exposure
time. For an unprotected system, let us express the peak
irradiances of the background scene and the laser spot, re-
spectively, as Iyo peak and Ijg peak, Which are proportionate
to the irradiance saturation value:

Lsat ()\) = €sat * (6)

]b7peak =0Qp - BSR - Isat()\b>
Il,peak =aQp- LSR- Isat()\l)

(Ta)
(7b)

where «; and and «; are respectively the strength of the
background illumination and the laser. The laser saturates a
single pixel when o = 1 and multiple pixels when oy > 1.
Sensor damage may occur at ; > 10°. For an optical sys-
tem protected by a pupil plane phase mask the corresponding
peak irradiance values of the background scene and laser are
respectively scaled by a background suppression value BSR
and the laser suppression value LS R. The values BSR ~ 1
and LS R << 1 lower the risk of sensor saturation and dam-
age while maintaining the transmission rate of the scene
irradiance.

Photon to Electron. Photons arrival at a sensor has a
Poisson distribution, the rate of which is determined by the



image irradiance I, the pixel pitch Az, wavelength A, and

the integration time ¢:

(Ib + Il) At (AJZ)Q
h-c

The hyperspectral photons are then converted to RGB space
via the following equation

p(\) =

®)

PR N z(\i)
p=|pc| =kY SO)IN) [F\)| AN (9)
i=1 _
PB Z(A\i)
where N = 31

S(\;) : spectral reflectance or radiance at wavelength \;,
I()\;) : spectral power distribution (illuminant) at A;,
Z(A;), (i), Z(N\;) : CIE 1931 color matching functions,

100
I()T(N) AN

k : normalization constant, k = ~
i=1

A\ : wavelength sampling interval.

According to the central limit theorem, the Poisson distri-
bution may be approximated by a Gaussian distribution,
which was found to be a better characterization of our sen-
sor in practice. The Gaussian distributed photon is given
by w ~ N(c1 - pp, ¢ - 0p), where its mean and standard
deviation are written respectively as the modulated mean
(ptp) and standard deviation (o,) of the photon arrival rate
p, and ¢ and ¢, are the modulation coefficients. Given a
quantum efficiency Q)., the collected photons are converted
to electrons: e = Q. - w, followed by noise corruptions and
the digitization process:

§ = CIop < min (Ssat7 \‘gmln (esat7 e+nd+nc> +n¢IJ >>

(10
where unwanted electrons generated by other factors are
modeled as additive dark current n. and read noise n,.. The
dark current has a Poisson distribution n. ~ P(u..), and the
read noise is Gaussian distributed n, ~ N (., 0,). The
mean values p., i, and the standard deviation o, of the
noise are obtained through sensor calibration.

Digitization. Electrons are converted into an array of
integer digital counts that represents the image recorded
by the sensor. The total number of electrons that exceeds
the full well capacity of the sensor eg,; is clipped. Elec-
trons are then amplified by a sensor gain G, producing an
array of floating points. Uniformly distributed quantiza-
tion noise n, ~ U(—0.5,0.5) is added to these digits, and
floating-point digital values are then quantized to integer
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Figure 4. Lens flare effects under laser illumination at various

wavelengths, caused by lens imperfections such as dirt, scratches,
windshield dents, grease, smudges, or their combinations.

digital counts. The upper limit of the digital counts is de-
termined by the bit depth per channel (bpc) of the sensor,
where s, = 2PP¢ — 1. The size of the image recorded by
the sensor is determined by the finite size (W, Hy) of that
sensor. Consider that a radiance map in the object plane
has a size (W,, H,) and the system PSF has a width W},
the size of the image formed in the focal plane is given by
(W, + Wy, H, + W},). Boundary areas that exceed the sen-
sor size are cropped. The values of the physical parameters
used in the simulation match the experiment (see Table 1).

4. Image Restoration

Here we introduce a Mamba-GAN for image restoration in
frequency space, where the background scene radiance bis
restored from the sensor image s:
b= Gres(s) (11)
The image restoration generator G...; and phase represen-
tation net G, are adversarially trained with a multiscale
discriminator D = {D¥|L = 0,1}. As shown in Fig. 2, the
architecture of G,..s consists of 8 layers FFT-Mamba blocks.
To better recover image details, a coarse-to-fine architec-
ture is established. The restored image bis downsampled by
antialiased bicubic interpolation and refined by the generator,
producing estimated radiance maps {EL}, where L = 0,1
represent coarse and fine scales respectively. The discrimi-
nators D = {DY|L = 0,1} determine whether the estimate
is real or false on each scale. The adversarial objective at
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this stage is written as:

Lcan,g = —Mapv - ZE[DL(?)L)] (12a)
L

Laan,p = Aapv - Y E[Dy (b")] — E[D*(6")]
L

—Aap - Y E[([V5 DE(B")]l2 — 1)%] (12b)
L

where b is sampled uniformly along a straight line between
a pair of estimated and ground truth radiance maps band b.
)\ADV = 0.1 and )\GP =1.

The DOE (or phase mask) learning objective consists
of two terms. the laser suppresion loss Lpor(LSR) =
S>I(N)/Iio(N\) encourages minimizing the laser sup-
presion ratio, while the background suppresion loss
Lpor(BSR) = > Iyo(\)/Ip(\) encourages maximizing
the transmission rate of non laser-induced light, such as
background scene:

LpoE :[:DOE(LSR)+£DOE(BSR) (13)

The reconstruction objective consists of two terms. The
first term is given by the Charbonnier L; difference between
the estimated and the ground truth, where the fine-scale
ground truth image is downsampled from the coarse-scale
ground truth image using an anti-aliasing bicubic method
[96]. In this method, the high-frequency components that
cause aliasing artifacts are filtered by a low-pass cubic kernel.
The second term is a FFT objective is expressed as the sum
of absolute difference between the Fourier transforms of the
ground truth radiance map and estimated radiance map at
fine- and coarse scales: radiance pyramids:

Lrpe = 3 /b= B2+ e+ |F(bF) — F(B)

L=0,1
(14)

4.1. Two-Stage Training

Suppressing laser irradiation while maintaining background
light transmission presents two conflicting objectives. A
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common strategy in multi-objective learning is to jointly
train a single network across tasks, exploiting shared rep-
resentations for greater efficiency and performance than
training tasks independently. While this can yield positive
transfer, disparities in task difficulty and objective, data dis-
tribution, or optimization dynamics often lead to gradient
interference and representation bias, reducing overall ac-
curacy [97]. To address this issue, we propose a two-stage
learning method that first learns shared features through joint
training of the neural DOE and image restoration neural net
and then fine-tunes parameters specific to image restoration
while freezing the neural DOE.

In the first stage, we jointly train the DOE (phase mask)
and image restoration networks, keeping both the phase
representation net and restoration net parameters learnable.
We optimize the mask objective and adversarial term with
gradient accumulation, which provides a more stable update
direction when handling noisy gradients from wide laser
strength variations:

In the second stage, we fine-tune the image restoration net-
work with the phase net frozen, updating only restoration
weights via mini-batch optimization of reconstruction objec-
tive and adversarial terms. Gradients are reset each iteration
to avoid inaccuracies from accumulation:

(3

max LGN (15)

D1,D2

min

+ Lpor
GT‘ep 7G7‘€S )

max LoAN (16)

1,

min
Grep 7G7‘es

) + ER,GC

In each stage, the generators and the discriminators are
trained in an alternating manner. Denote Lgan = Lgan,¢
and Lgan = Lgan,p as the adversarial objectives for gen-
erators and discriminators respectively, the generators seek
to minimize the adversarial and reconstruction objectives,
while the discriminators D1 and D, aim to maximize only
the adversarial terms. Using only the generators at the in-
ference stage, the radiance of the scene is restored in an
end-to-end manner.



5. Experiment Setup

Deep learning systems rely on large-scale and high-quality
data to achieve optimal results [98, 99]. A set of 100K
unique color images of versatile contents and 4K resolu-
tion (3860 x 2160) is collected[100] as RGB input scene
radiance b for training, and another 1K testing images are
collected for testing. During training, coded sensor images
are numerically simulated in an online manner. To match the
resolution of our laboratory camera sensor (2048 x 2048),
each image is randomly cropped. The simulated sensor im-
ages are then downsampled to 256 x 256 using antialiased
bicubic interpolation [96] to reduce the computational cost
of neural network training. Laser strengths «; are randomly
sampled from 100K predetermined values, which are uni-
formly distributed in the range of [0,2e6]. The incident
angles of laser 7, = (n,,n,) are normally sampled, with
the ~3-sigma” (three times the standard deviation) set to
0.36 - [f/Ws, f/H;] along each axis, where f is the focal
length, and W, and H are the sensor width and height
respectively. The models are trained with various noise
strengths, where the dark current is normally sampled with
a standard deviation equal to half its mean p. = 0.002e™.
The read noise is uniformly sampled with p,. € [350,400]e™
and o, € [10,11]e~. The Gaussian-distributed photon
noise has coefficients uniformly sampled ¢; € [0,25%]
and ¢y € [0.9,1.1]. A variety of background illumination
strengths oy, € [0.3,0.7] are considered. Exposure times ¢
are normally sampled with a mean of 0.1 seconds, and the
standard deviation is 0.1 times the mean.

5.1. Model Training

Our NeuSee system was trained on eight A100-80G GPUs.
To accommodate the imaging pipeline with high-resolution
hyperspectral data (2048 x 2048 x 31, batch size 8) and
simultaneous training of multiple networks, we employ het-
erogeneous data and model parallelism for distributed train-
ing, as shown in Fig. 5. Adam optimizer with momentum
B1=0.9, B2 = 0.999 is adopted in training. Our system is
trained with learning rates of 2e-4 for weights and 4e-4 for
biases. In the first stage, training runs for 10,000 iterations
until the minimum LSR is reached, followed by a second
stage of 20,000 iterations. Learning rates are halved after the
first 2,000 iterations and further reduced by 70% every 1,000
iterations. The biases and weights are respectively zero and
orthogonally initialized.

6. Results and Discussion

Fig. 6 compares the laser suppression ratio, phase mask, and
PSF of our NeuSee system with the half-ring mask [28, 30],
which was optimized using a genetic algorithm. Our NeuSee
achieves a suppression over a broader laser spectral, which
on average provides 5x stronger suppresion of visible laser
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Figure 6. Comparison of laser suppression ratio, DOE (or phase
mask), and PSF between our jointly learned NeuSee system and
the heuristically learned half-ring system [28, 30]. Our NeuSee
achieves, on average, 100 times stronger suppresion of visible laser
light than the half-ring.

light than the half-ring mask.

Qualitative evaluation of our NeuSee imaging is shown
in Figure 7, where the proposed NeuSee results are com-
pared with a traditional half-ring DOE that is learned using
heuristic methods [30]. Background illumination strength
ap 0.7, coefficients of photon noise c; 20% and
¢y = 1.0, dark current noise . = 0.002e~, as well as the
read noise i, = 390e™ and o, = 10.5e~ remain the same in
simulation. We showcase the presence of five lasers at voilet,
blue, green, yellow, red bands. Each has a different strength,
ranging from mild a; = le4 to potentially damaging laser
dazzle (o; = 1e6) strengths. A laser free case is also demon-
strated. In both the laser-free and laser-dazzle cases, our
NeuSee outperforms the heuristically learned half-ring phase
mask and produces the consistently highest-fidelity recon-
structions for the anti-dazzle imaging. Quantitative evalu-
ations are performed on a set of 7K test images simulated
from a thousand groundtruth scenes and seven laser strengths
a; = {0,10%|k = 1,2, ...,6}. Other parameters follow the
sampling scheme of the training set. Compared to the half-
ring, our NeuSee improves the restored image quality by
10.1% (L1 metric on average).

7. Conclusion

We present NeuSee, a computational imaging framework
that jointly learns a neural diffractive optical element (DOE)
and a frequency-space Vision Mamba-GAN network for
image restoration. Trained end-to-end on 100K images, it
protects sensors from laser flare and damage using a lin-
ear, broadband, and instantaneous optical mechanism. The
DOE provides immediate protection, with system latency
determined only by post-processing. In simulation, NeuSee
achieves an irradiance dynamic range of 10° over sensor
saturation and remains robust under varying laser intensities,
angles, ambient lighting, and noise, enabling potential ap-
plications in autonomous vehicles, security cameras, HDR
imaging, and laser-safe headsets.
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