
Sari Sandbox: A Virtual Retail Store Environment for Embodied AI Agents

Supplementary Material

S1. Texture fidelity

As discussed in Sec. 4.2, we evaluated texture fidelity us-
ing PaddleOCR [37]. While it performs well on structured
product labels, it exhibits limitations in more challenging
scenarios. Figure S1 and Figure S2 provide qualitative ex-
amples where OCR accuracy declines. Figure S1 presents
a case involving mixed horizontal and vertical text orienta-
tions, which often result in incorrect segmentation or recog-
nition. Figure S2 highlights the challenges posed by styl-
ized fonts and logo-like text, where decorative design el-
ements interfere with accurate character detection. These
examples encourages OCR-aware scene design and the po-
tential need for active viewpoint control in embodied agent
pipelines.

Figure S1. PaddleOCR failed in identifying the rotated text be-
cause majority is horizontal text.

S2. Embodied agent

An agent is an entity that perceives its environment through
sensors and acts upon it using actuators [40]. As illustrated
in Figure S3, the agent, a modular system, operates within
its environment (sandbox) through a continuous loop of per-
ception, cognition, and action to achieve a set goal. Upon
goal completion, it halts until a human provides a new di-
rective. This paradigm is powerful as it shifts from static
programming to a dynamic, interactive model where sys-
tems are both observers and actors.

For our agent’s cognitive engine, we required a VLM in-
stead of an LLM, incorporating visual sensory inputs. We
based our selection on the Massive Multi-discipline Mul-
timodal Understanding and Reasoning (MMMU) [41]. At
the time of evaluation, Gemini 2.5 Pro was state-of-the-art,
achieving a score of 84.0 on the MMMU validation set (us-

Figure S2. PaddleOCR failed in identifying stylized text of the
Moby Brand despite being able to identify texts in the same image.

Human SandboxAgent

Action

Feedback
STOP

Figure S3. The elementary concept of an autonomous agent.

ing its experimental Deep Think mode), nearing the human
expert benchmark of 88.6 [42].

In our sandbox, the agent faces two core challenges:
autonomous navigation and object manipulation, both vi-
tal for product search and retrieval. We adapted the ReAct
framework for our needs. To focus on core capabilities, we
simplified the embodied agent’s navigation and manipula-
tion; complex behaviors like multi-item handling or check-
out were excluded. We forego A* planning [43] as our em-
bodied agent lacks access to a pre-built grid-map, relying
solely on visual input during navigation. Our primary ob-
jective is not to develop a state-of-the-art agent, but rather
to construct a functional one that rigorously tests the prac-
ticality and usability of the APIs designed in Section 3.6
through basic item search and retrieval tasks.

Our embodied agent operates using the pattern in Fig-
ure S4, which is designed for both efficiency and con-
trol when processing a grocery task (e.g., “Find a healthy
snack”). Our key approach here is that the embodied



𝒕 = 𝑻

𝒕 = 𝟎

Assoc. 

Learning

“Grab a Kinder bueno”

Mode cue: Navigation

Context cue: Kinder 

bueno is a snack. 

Snacks are found in 

Shelf 5.

Planning

Planning: Snacks are in 

Shelf 5. On my left is 

Shelf 1. In navigation 

mode, I can move forward 

10 times and check other 

shelves.

{‘actions’: 

[move_forward], 

‘times’: [10]}

Sandbox

𝑺𝒕𝒂𝒕𝒆 Tools

Feedback

𝑨𝒄𝒕𝒊𝒐𝒏

𝑷𝒓𝒐𝒎𝒑𝒕

STOP

Semantic + 

Episodic 

Memory

Figure S4. An overview of our agentic pattern. The process begins with a prompt, initiating a continuous loop. In the initial associative
learning step, the embodied agent consults its semantic and episodic memory, and synthesizes its current state and the given task into
mode and context (M+C) cues. These cues are included as inputs for the planning step, where the VLM generates an action sequence.
This sequence, comprising elementary actions and potential tool calls, is executed within the sandbox. The loop then repeats with the new
state, continuing until the associative learning step issues a STOP command.

agent generates an action sequence—a chunk of related
commands—rather than a single action per cycle. This ap-
proach is highly effective for repetitive tasks such as gro-
cery shopping (e.g., “navigate to Shelf 1, search; navi-
gate to Shelf 2, search; navigate to Shelf 3, grasp”). This
pattern effectively manages such decomposed, sequential
steps. Furthermore, this design substantially offloads the
cognitive load from the VLM. The associative learning step
pre-processes and provides mode cues (e.g., indicating nav-
igation or manipulation) and context cues. This means
the planning step does not need to deliberate on these op-
erational states, streamlining its decision-making. Conse-
quently, this pattern makes debugging easier and provides
more robust control over the outputs.

The agentic loop operates through three key steps. First,
the associative learning step queries the sandbox for the
embodied agent’s current state (coordinates, visual input) at
each step. It then processes this state against the prompt to
generate two cues for the next stage: a mode cue and a con-
text cue. The mode cue switches the embodied agent’s op-
erational state between navigation and manipulation, con-
straining the VLM to specific symbolic actions for im-
proved reliability. The context cue provides recall infor-
mation from the embodied agent’s semantic and episodic
memory. Second, planning step takes this state informa-
tion, along with the mode cue, context cue, and available
tools (function-calling APIs), and passes them to the VLM,
which generates a structured action sequence. Finally, dur-

ing the execution step, an external parser translates this se-
quence into executable API calls dispatched to the sand-
box, yielding an observable result. The embodied agent
perceives this new state, and the loop repeats until the as-
sociative learning step issues a STOP command.

To overcome the stateless nature inherent in VLM-
powered embodied agents, our embodied agent explicitly
models memory, leveraging the four-part cognitive architec-
ture. This framework, managed within our agentic pattern,
comprises the following components: procedural mem-
ory which contains the embodied agent’s core rules and
skills, implemented as the system instructions provided to
the VLM; working memory which contains the immediate
interaction history, managed by caching and injecting con-
text within the VLM’s context window; semantic memory
which contains the factual knowledge about the environ-
ment; and episodic memory which contains the distilled
takeaways from the embodied agent’s own experiences. To
implement the semantic memory, we first created a base se-
mantic memory which is a text file containing the store lay-
out, product locations (e.g., “Shelf 1 contains cereals”), and
rudimentary directions from the embodied agent’s spawn
point to any shelf (mimicking natural instructions). Sim-
ilarly, the episodic memory is implemented as a text file,
which starts blank at the beginning of each task.

The semantic and episodic memories are managed by a
memory writing operation that occurs during the associa-
tive learning step. At each timestep, this module consults



both memory files. It uses the semantic memory to ground
the embodied agent in its environment. After action ex-
ecution, the associative learning step updates the episodic
memory by synthesizing a three-point reflection on the ac-
tion that had just been executed: a dense summary of what
occurred, what actions worked, and what to avoid in the fu-
ture. The key information recalled from both memories is
then encoded into the context and mode cues, and passed to
the planning step to reduce the cognitive load and enhance
context. It is important to note that while the associative
learning and planning steps use the same Gemini model re-
lease version, they function as distinct modules with differ-
ent system instructions.

S3. Actions and tools
Our embodied agent interacts with the Sari Sandbox en-
vironment through a defined set of actions, categorized
into distinct operational modes: navigation and manipula-
tion (Table S1). These actions enable precise control over
the embodied agent’s movement and interaction with ob-
jects within the simulated grocery store.

The navigation mode allows the agent to control its
body’s position and orientation. This includes fun-
damental actions such as move forward, which ad-
vances the agent by 0.1 units, and pan left and
pan right, which rotate the agent’s view horizontally
by 2.5-degree increments. While these appear as sin-
gle, high-level API calls, their underlying implementa-
tion involves iterative, atomic calls to the simulator’s core
API functions. For instance, move forward directly
invokes TransformAgent((0, 0, 0.1), (0, 0,
0)), allowing for controlled, fine-grained movement up
to a predefined unit limit. Similarly, pan left and
pan right are built upon TransformAgent((0, 0,
0), (0, -2.5, 0)) and TransformAgent((0,
0, 0), (0, +2.5, 0)), respectively, to control the
agent’s yaw rotation.

Table S1. Different modes of operation and their associated ac-
tions. Action descriptions: move forward to move the em-
bodied agent forward by 0.1 units in the sandbox. pan left
and pan right to pan left and right by 2.5 degrees, respec-
tively. center object on screen to center the embodied
agent’s body on the target object in the frame. retrieve item
to approach the target object, grab it with the embodied agent’s
hand, and inspect it. Navigation and manipulation invokves
TransformAgent and TransformHands, respectively.

Mode Actions

Navigation move forward, pan left,
pan right

Manipulation center object on screen,
retrieve item

The manipulation mode enables the agent to inter-
act directly with items in the environment. This in-
cludes actions like center object on screen and
retrieve item.

The center object on screen action leverages
Gemini 2.5 Pro for object detection. It uses visual inputs
(obtained via first-person point-of-view screenshot within
the sandbox) to calculate the target object’s bounding box.
The VLM’s perception output after calling loc object
tool, providing ymin, xmin, ymax, xmax coordinates, is
then translated into pixel coordinates. Based on the object’s
horizontal and vertical deviation from the screen center, the
agent directly invokes TransformAgent to perform pre-
cise yaw and pitch rotations, aligning its perspective with
the object.

The retrieve item action is a more complex, com-
pound behavior that orchestrates several steps:
• Depth estimation. The agent first moves generally to-

wards the detected target using visual input and esti-
mated depth via est depth tool. This often involves
move forward actions, which, as described, trans-
late to repeated TransformAgent((0, 0, 0.1),
(0, 0, 0)) calls.

• Fine-tuning orientation. It then adjusts its orientation to
face a cardinal direction for consistent alignment, again
utilizing TransformAgent for precise yaw control.

• Horizontal centering. The embodied agent performs
a strafe to center operation to precisely align it-
self with the object. This action calculates the horizontal
offset of the target object’s bounding box from the im-
age center. It then converts this pixel offset into a re-
quired linear movement in world units. Subsequently,
strafe to center executes a series of granular calls
which correspond to TransformAgent((+0.1, 0,
0), (0, 0, 0)) or TransformAgent((-0.1,
0, 0), (0, 0, 0)) to incrementally shift the em-
bodied agent’s body sideways until the object is horizon-
tally centered in its view.

• Final approach and interaction. The embodied agent
moves to the item’s immediate vicinity and executes the
physical grab and read operation. This critical step
involves a choreographed series of atomic hand move-
ments directly implemented via the TransformHands
API. Specifically, the agent can extend its hands for-
ward by adjusting their Z-axis position, pull them back-
ward for Z-axis retraction, or raise and lower them to
control their Y-axis position. Rotational actions, also
achieved by TransformHands, allow for precise ma-
nipulation of the hand’s yaw rotation. Once positioned,
the agent can grasp the item using ToggleLeftGrip
API calls to simulate a grip. Following the grab,
the grab and read item operation initiates a new
screenshot and then processes this image using an Opti-



cal Character Recognition (OCR) tool via ocr object
to extract any text present on the item, thereby simulat-
ing visual inspection. These primitive hand and vision-
based interactions are crucial for the embodied agent to
accurately reach, grasp, and inspect the target item, even
though they are not exposed as high-level API actions in
the table.
The VLM serves as the cognitive engine for these ac-

tions. It processes visual information and textual prompts
to determine the appropriate sequence of actions and their
parameters. Tools found in Table S2 are integral to the em-
bodied agent’s perception and decision-making loop, par-
ticularly for tasks requiring object identification and precise
interaction. The structured nature of these higher-level ac-
tions, built upon the fundamental TransformAgent and
TransformHands APIs, ensures the embodied agent can
perform complex grocery tasks by decomposing them into
manageable, executable steps.

Table S2. Tools that are part of an elementary action and their
corresponding purposes.

Tool Purpose

loc object Uses Gemini 2.5 Pro’s object local-
ization capability to output bounding
box coordinates of a specified item or
item of interest. Format: [ymin,
xmin, ymax, xmax]. Part of:
center object on screen.

ocr object Uses PaddleOCR [37] for item inspec-
tion via optical character recognition
(OCR). Part of: retrieve item.

est depth Uses Depth-Anything-V2 [44] Small
for computing the distance between
target object and embodied agent
before item inspection. Part of:
retrieve item.


